搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种光谱特征增强驱动的机器学习地基红外高光谱云检测方法

王越 叶函函 熊伟 王先华 施海亮 李超 程晨 吴时超

引用本文:
Citation:

一种光谱特征增强驱动的机器学习地基红外高光谱云检测方法

王越, 叶函函, 熊伟, 王先华, 施海亮, 李超, 程晨, 吴时超

A spectral feature enhancement-driven machine learning method for cloud detection using ground-based infrared hyperspectral data

WANG Yue, YE Hanhan, XIONG Wei, WANG Xianhua, SHI Hailiang, LI Chao, CHENG Chen, WU Shichao
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 云是地基红外高光谱仪器探测大气的重要干扰源, 有效云检测不可或缺. 水汽干扰和高云识别精度低是云检测面临的两个关键挑战. 本文利用大气红外光谱探测仪(ASSIST)在云南丽江、西藏自治区墨脱和西藏自治区日土的观测数据, 分析了晴空和有云条件下的光谱特征差异, 并据此提出了一种光谱特征增强的机器学习云检测方法. 结合同步观测的激光雷达、气象站及全天空成像仪数据, 系统评估了该方法在不同相对湿度(RH)和不同云底高度(CBH)条件下的检测性能. 实验结果表明: 该方法与激光雷达检测结果的一致性高达97.61%. 在不同RH条件下, 该方法精度均优于使用原始光谱特征的方法, 尤其在RH > 70%时, 对晴空光谱的识别精度提升明显, 从86.01%提高至91.89%. 同样, 在不同CBH条件下, 新方法也展现出优于使用原始光谱特征方法的性能, 特别在识别3 km < CBH 5 km的中云和CBH > 5 km的高云时, 精度提升尤为明显. 当3 km < CBH 5 km时, 精度从95.45%提升至98.64%; 当CBH > 5 km时, 精度从87.5%提升至91.67%.
    Clouds exert a significant influence on infrared radiation, making cloud detection a crucial step in the application of infrared hyperspectral data. Ground-based infrared hyperspectrometers can measure downward atmospheric thermal radiation with high temporal resolution; however, their spectral radiance measurements are strongly affected by atmospheric conditions. In particular, water vapor interference and the limited accuracy in high-cloud identification constitute two key challenges for ground-based infrared hyperspectral cloud detection. Traditional threshold-based cloud detection methods are difficult to adapt to different locations and dynamically changing atmospheric conditions,while machine learning methods can achieve cloud detection with higher accuracy, greater robustness, and improved automation. Building on the advantages of machine learning, observational data from the atmospheric sounder spectrometer by infrared spectral technology (ASSIST), collected at Lijiang (Yunnan), Motuo (Xizang Autonomous Region), and Ritu (Xizang Autonomous Region) in China, are used to analyze the spectral differences between sunny and cloudy conditions in this study. Based on these differences, a spectral feature enhancement-driven machine learning method for cloud detection is proposed. Finally, by incorporating synchronous observations from lidar, meteorological stations, and all-sky imagers, the proposed method is systematically evaluated under different relative humidity (RH) and cloud base height (CBH) conditions. The experimental results show that the consistency between the results obtained by the proposed method and lidar-based detection is as high as 97.61%. Under different RH conditions, the proposed method outperforms the method based on original spectral features. Notably, when ${\text{RH}} > 70{\text{%}} $, the accuracy of clear-sky spectral identification improves significantly: increasing from 86.01% to 91.89%. Similarly, under different CBH conditions, the proposed method also exhibits superior performance compared with the method in which original spectral features are used. In particular, the accuracy improvements are especially notable when identifying mid-level clouds with ${\text{3 km}} < {\text{CBH}} \leqslant 5{\text{ km}}$, as well as high-level clouds with ${\text{CBH}} > 5{\text{ km}}$. When ${\text{3 km}} < {\text{CBH}} \leqslant 5{\text{ km}}$, the accuracy increases from 95.45% to 98.64% and when ${\text{CBH}} > 5{\text{ km}}$, the accuracy improves from 87.5% to 91.67%. The proposed method significantly enhances the automation and accuracy of cloud detection in ground-based infrared hyperspectral radiance data, thereby providing higher-quality fundamental datasets for supporting subsequent applications such as radiative transfer simulation, remote sensing parameter retrieval, and data assimilation in numerical weather prediction (NWP) models.
  • 图 1  实验配套设备

    Fig. 1.  Deployed instruments.

    图 2  ASSIST测得的几种错误光谱(橙色线条)和正确光谱(绿色线条) (a), (b), (c), (d)分别代表采集的4种错误光谱; (e), (f) 分别代表晴空和多云采集的正确光谱

    Fig. 2.  Several erroneous spectra (orange lines) and correct spectra (green lines) measured by ASSIST: (a), (b), (c), (d) respectively represent the four types of erroneous spectra collected; (e), (f) respectively represent the correct spectra collected under clear sky and cloudy conditions.

    图 3  三个地点晴空和多云光谱特征 (a) 540—1800 cm–1波段晴空和多云光谱特征; (b) 920—970 cm–1波段新增的晴空和多云光谱特征的局部放大图

    Fig. 3.  The spectral characteristics of clear sky and cloudy conditions in three locations: (a) The spectral characteristics of clear sky and cloudy conditions in the 540–1800 cm–1 band; (b) a local magnified view of the newly added spectral characteristics of clear sky and cloudy conditions in the 920–970 cm–1 band.

    图 4  云检测算法的流程图

    Fig. 4.  Flowchart of the cloud detection algorithm.

    图 5  表2中用于区分有云和无云晴空场景的不同特征重要性排序结果 (a) 使用原始12个特征重要性排序结果; (b) 新增8个特征后重要性排序结果

    Fig. 5.  Importance ranking results of different features used to distinguish between cloudy and cloud-free clear sky scenes in Table 2: (a) The importance ranking results using the original 12 features; (b) the importance ranking results after adding 8 new features.

    图 6  测试集中三个地点数据在不同RH条件下出现的概率

    Fig. 6.  The probability of the data from the three locations in the test set appearing under different RH conditions.

    图 7  不同RH下, ASSIST在高美古所测晴空和多云光谱的特征 (a) 540—1800 cm–1波段晴空和多云光谱特征; (b) 920—970 cm–1波段新增的晴空和多云光谱特征的局部放大图

    Fig. 7.  The spectral characteristics of clear sky and cloudy sky measured by ASSIST in Gao Meigu under different RH conditions: (a) The spectral characteristics of clear sky and cloudy conditions in the 540–1800 cm–1 band; (b) a local magnified view of the newly added spectral characteristics of clear sky and cloudy conditions in the 920–970 cm–1 band.

    图 8  ASSIST在日土测得的晴空和不同CBH下多云光谱以及激光雷达探测的云和气溶胶总消光系数结果 (a) ASSIST测得的晴空和多云光谱; (b) 激光雷达探测的云和气溶胶总消光系数结果

    Fig. 8.  The results of the ASSIST measurements of clear sky and cloudy spectra, as well as the total extinction coefficients of clouds and aerosols detected by the lidar under different CBH conditions: (a) The clear sky and cloudy spectra measured by ASSIST; (b) the total extinction coefficient results of clouds and aerosols detected by lidar.

    图 9  测试集中3个地点数据在不同CBH条件下出现的概率

    Fig. 9.  The probability of the data from the three locations in the test set appearing under different cloud base height conditions.

    图 10  在2025年3月25号不同时刻, ASSIST在墨脱测得的晴空和薄雾光谱 (a) ASSIST测得的光谱; (b) 激光雷达探测的云和气溶胶总消光系数结果

    Fig. 10.  The spectra of clear sky and mist measured by ASSIST at different times in Motuo on March 25, 2025: (a) The spectra measured by ASSIST; (b) the total extinction coefficient results of clouds and aerosols detected by lidar.

    图 11  在2025年3月25号3个薄雾时刻, 全天空成像仪拍摄的图像 (a), (b), (c)分别代表北京时间 12:00:03, 13:01:11, 14:04:26

    Fig. 11.  The images captured by the all-sky imager at three mist moments on March 25, 2025: (a), (b), (c) Represent Beijing time 12:00:03, 13:01:11, 14:04:26, respectively.

    图 12  在2025年3月24号不同时刻, ASSIST在墨脱测得的晴空和厚雾光谱 (a) ASSIST测得的光谱; (b) 激光雷达探测的云和气溶胶总消光系数结果

    Fig. 12.  The spectra of clear sky and thick fog measured by ASSIST at different times in Motuo on March 24, 2025: (a) The spectra measured by ASSIST; (b) the total extinction coefficient results of clouds and aerosols detected by lidar.

    图 13  在2025年3月24号3个厚雾时刻, 全天空成像仪拍摄的图像 (a), (b), (c)分别代表北京时间 03:12:08, 05:46:59, 08:21:50

    Fig. 13.  The images captured by the all-sky imager at three thick fog moments on March 24, 2025: (a), (b), (c) Represent Beijing time 03:12:08, 05:46:59, 08:21:50, respectively.

    表 1  三个地点的晴空和多云样本数量

    Table 1.  The number of clear-sky and cloudy samples at three locations.

    地点 晴空样本 多云样本 海拔/km 观测时间
    丽江高美古
    天文台
    3357 2826 3.23 2024.03.20—
    2024.05.04
    墨脱气象
    观测站
    1584 3641 0.76 2024.11.29—
    2024.12.19
    2025.03.15—
    2025.03.28
    日土阿里荒漠环
    境综合观测站
    4052 1543 4.23 2025.05.27—
    2025.06.15
    总计 8993 8010
    下载: 导出CSV

    表 2  用于区分多云和晴空数据的20个选定特征(前12个特征代表原始特征, 后8个特征代表新增特征)

    Table 2.  Twenty selected features used to distinguish between cloudy and clear-sky data (the first 12 features represent the original features and the last 8 features represent the added features).

    编号 特征
    1 740—760 cm–1波段辐亮度的斜率
    2 740—760 cm–1波段辐亮度的截距
    3 780—920 cm–1波段辐亮度的斜率
    4 780—920 cm–1波段辐亮度的截距
    5 1000—1040 cm–1波段辐亮度斜率
    6 1000—1040 cm–1波段辐亮度截距
    7 1050—1070 cm–1波段辐亮度斜率
    8 784.6 cm–1通道辐射与781.7—782.6 cm–1波段平均辐射之间的比率
    9 791.8 cm–1通道辐射与789.4—790.4 cm–1波段平均辐射之间的比率
    10 1175 cm–1和1170 cm–1通道辐射之间的比率
    11 1187 cm–1和1184 cm–1通道辐射之间的比率
    12 1198 cm–1和1195 cm–1通道辐射之间的比率
    13 925.8524 cm–1通道辐亮度
    14 948.9987 cm–1通道辐亮度
    15 951.892 cm–1通道辐亮度
    16 962.5007 cm–1通道辐亮度
    17 925.8524 cm–1 和 925.3702 cm–1 通道辐射之间的比率
    18 948.9987 cm–1 和948.5165 cm–1通道辐射之间的比率
    19 951.892 cm–1和951.4098 cm–1通道辐射之间的比率
    20 962.5007 cm–1和962.0185 cm–1通道辐射之间的比率
    下载: 导出CSV

    表 3  云检测使用的训练集和测试集样本数

    Table 3.  The number of samples in the training set and test set used for cloud detection.

    数据集晴天样本数多云样本数总计
    训练集(70%)6290560411894
    测试集(30%)270324065109
    下载: 导出CSV

    表 4  提出的算法和激光雷达云检测结果的混淆矩阵

    Table 4.  The confusion matrix of the proposed algorithm and lidar cloud detection results.

    激光雷达探测
    有云晴空
    云检测算法
    (ASSIST)
    有云TP
    (True positive)
    FP
    (False positive)
    晴空FN
    (False negative)
    TN
    (True negative)
    下载: 导出CSV

    表 5  使用原始特征排序后不同特征个数对应的云检测结果

    Table 5.  Cloud detection results with different numbers of features after sorting the original features.

    特征个数PC/%TPR/%TNR/%
    195.0190.9098.67
    295.4993.8197.37
    392.8895.8490.23
    494.8596.9792.97
    595.5697.2694.04
    685.7197.1775.51
    779.4397.2263.60
    886.3697.6376.32
    976.5997.6757.82
    1076.5797.6757.79
    1178.7497.8861.71
    1281.6498.0967.00
    下载: 导出CSV

    表 6  使用新增特征排序后不同特征个数对应的云检测结果

    Table 6.  Cloud detection results with different numbers of features after sorting the newly added features.

    特征个数PC/%TPR/%TNR/%
    195.3091.9898.26
    294.7394.4395.01
    394.7294.4394.97
    496.5094.7298.08
    596.2494.8097.52
    696.2096.3096.12
    796.4696.7696.19
    896.5497.0996.04
    996.5698.0995.19
    1097.6198.2197.08
    1182.6097.3869.44
    1295.1397.7692.79
    1396.8197.4296.26
    1496.8197.4296.26
    1596.5997.4295.86
    1688.8897.9680.80
    1788.4997.8880.13
    1880.8698.2165.41
    1991.4197.7685.76
    2091.4197.8085.72
    下载: 导出CSV

    表 7  不同RH下测试集中三个地点总的晴空和多云样本数(括号中的百分比表示测试集中所选RH范围内的数据与总测试集数据之间的比例)

    Table 7.  The total number of clear-sky and cloudy samples at the three locations in the test set under different RH conditions (The percentages in parentheses indicate the proportion of data within the selected RH range in the test set to the total test set data).

    不同水汽测试集
    晴空样本
    测试集
    多云样本
    总计
    ${\text{RH}} \leqslant 30{\text{%}} $188310602943(57.6%)
    $30{\text{%}} < {\text{RH}} \leqslant 50{\text{%}} $25079329(6.4%)
    $50{\text{%}} < {\text{RH}} \leqslant 70{\text{%}} $327158485(9.5%)
    ${\text{RH}} > 70{\text{%}} $24311091352(26.5%)
    下载: 导出CSV

    表 8  ASSIST和激光雷达在不同RH条件下云检测结果的一致性

    Table 8.  Consistency of cloud detection results by ASSIST and lidar under different RH conditions.

    不同RH 方法 PC/
    %
    TPR/
    %
    TNR/
    %
    FPR/
    %
    FNR/
    %
    ${\text{RH}} \leqslant 30{\text{%}} $ 原始方法 94.33 94.53 94.21 5.79 5.47
    新方法 97.93 96.89 98.51 1.49 3.11
    $30{\text{%}} < {\text{RH}} \leqslant 50{\text{%}} $ 原始方法 94.53 93.67 94.80 5.20 6.33
    新方法 96.66 94.94 97.20 2.80 5.06
    $50{\text{%}} {\text{ < RH}} \leqslant 70{\text{%}} $ 原始方法 98.76 99.37 98.47 1.53 0.63
    新方法 99.58 99.40 100.00 0 0.60
    ${\text{RH}} > 70{\text{%}} $ 原始方法 97.34 99.82 86.01 13.99 0.18
    新方法 98.82 99.83 91.89 8.11 0.17
    下载: 导出CSV

    表 9  不同CBH下测试集中3个地点总的多云样本数(括号中的百分比表示测试集中所选CBH范围内的数据与总测试集数据之间的比例)

    Table 9.  The total number of cloudy samples at the three locations in the test set under different cloud base height conditions (The percentages in parentheses indicate the proportion of data within the selected cloud base height range in the test set to the total test set data).

    不同CBH测试集多云样本
    ${\text{CBH}} \leqslant 1{\text{ km}}$1196(49.69%)
    $1{\text{ km < CBH}} \leqslant {\text{3 km}}$494(20.52%)
    $3{\text{ km < CBH}} \leqslant 5{\text{ km}}$646(26.86%)
    ${\text{CBH}} > 5{\text{ km}}$70(2.93%)
    下载: 导出CSV

    表 10  ASSIST和激光雷达在不同CBH条件下云检测结果的一致性

    Table 10.  Consistency of cloud detection results by ASSIST and lidar under different cloud base height conditions.

    不同CBH方法PC/%TPR/%FNR/%
    ${\text{CBH}} \leqslant 1{\text{ km}}$原始方法98.5398.531.47
    新方法99.2699.260.74
    $ 1{\text{ km}} < {\text{CB}}H \leqslant 3{\text{ km}} $原始方法96.4396.433.57
    新方法97.6297.622.38
    ${\text{3 km}} < {\text{CBH}} \leqslant 5{\text{ km}}$原始方法95.4595.454.55
    新方法98.6498.641.36
    ${\text{CBH}} > 5{\text{ km}}$原始方法87.5087.5012.5
    新方法91.6791.678.33
    下载: 导出CSV
    Baidu
  • [1]

    Govender M, Chetty K, Bulcock H 2007 Water S. A. 33 145

    [2]

    Vorovencii I 2010 Bull. Transilvania Univ. Bras. II: For. Wood Ind. Agric. Food Eng. 2 51

    [3]

    Shimoda H, Ogawa T 2000 Adv. Space Res. 25 937Google Scholar

    [4]

    Aumann H H, Miller C R 2002 Proc. SPIE 4483 332

    [5]

    Clerbaux C, Hadji-Lazaro J, Turquety S, George M, Coheur P F, Hurtmans D, Wespes C, Herbin H, Blumstein D, Tourniers B, Phulpin T 2007 Space Res. Today 168 19Google Scholar

    [6]

    Andrew S, Nigel A, William B, Amy D 2015 Atmos. Sci. Lett. 16 260Google Scholar

    [7]

    Qi C L, Wu C Q, Hu X C, Xu H L, Lee L, Zhou F, Gu M J, Yang T H, Shao C Y, Yang Z D, Zhang P 2020 IEEE Trans. Geosci. Remote Sens. 58 4335Google Scholar

    [8]

    Yang J, Zhang Z Q, Wei C Y, Lu F, Guo Q 2017 Bull. Am. Meteorol. Soc. 98 1637Google Scholar

    [9]

    Knuteson R O, Revercomb H E, Best F A, Ciganovich N C, Dedecker R G, Dirkx T P, Ellington S C, Feltz W F, Garcia R K, Howell H B, Smith W L, Short J F, Tobin D C 2004 J. Atmos. Oceanic Technol. 21 1763Google Scholar

    [10]

    Rochette L, Smith W, Howard M, Bratcher T 2009 SPIE 7457 002

    [11]

    Turner D D, Löhnert U 2014 J. Appl. Meteorol. Climatol. 53 752Google Scholar

    [12]

    Mariani Z, Strong K, Palm M, Lindenmaier R, Adams C, Zhao X, Savastiouk V, McElroy C T, Goutail F, Drummond J R 2013 Atmos. Meas. Tech. 6 1549Google Scholar

    [13]

    Seo J, Choi H, Oh Y 2022 Remote Sens. 14 407Google Scholar

    [14]

    Ye J, Liu L, Yang W Y, Ren H 2022 IEEE Geosci. Remote Sens. Lett. 19 1

    [15]

    Wang Y, Xiong W, Ye H H, Shi H L, Wang X H, Li C, Wu S C, Cheng C 2025 Remote Sens. 17 1440Google Scholar

    [16]

    Wang Y, Ye H H, Shi H L, Wang X H, Li C, Sun E C, An Y, Wu S C, Xiong W 2024 J. Quant. Spectrosc. Radiat. Transfer 326 109118Google Scholar

    [17]

    Mcnally A, Watts P A 2003 Q. J. R. Meteorol. Soc. 129 3411Google Scholar

    [18]

    Bauer P, Auligné T, Bell W, Geer A, Guidard V, Heilliette S, Kazumori M, Kim M J, Liu E, McNally A, Macpherson B, Okamoto K, Renshaw R, Riishøjgaard L P 2011 Q. J. R. Meteorol. Soc. 137 1934Google Scholar

    [19]

    Löhnert U, Turner D, Crewell S 2009 J. Appl. Meteorol. Climatol. 48 1017Google Scholar

    [20]

    Li C, Ma J J, Yang P, Li Z Q 2019 J. Quant. Spectrosc. Radiat. Transfer 222 196

    [21]

    Cho J S, Goo T Y, Shin J 2015 Korean Soc. Remote Sens. 31 137Google Scholar

    [22]

    Zhang Q, Yu Y, Zhang W M, Luo T L, Wang X 2019 Remote Sens. 11 3035Google Scholar

    [23]

    Luo T L, Zhang W M, Yu Y, Feng M, Duan B H, Xing D 2019 Int. J. Remote Sens. 40 6530Google Scholar

    [24]

    Shi H X, Yu Y, Zhang W M, Ma G, Zhang Q, Luo T L, Huang Q B 2021 Proceedings of the 2021 International Conference on Computer Information Science and Artificial Intelligence (CISAI) Kunming, China, September 17–19, 2021 p107

    [25]

    Liu L, Ye J, Li S L, Hu S, Wang Q 2022 Remote Sens. 14 2589Google Scholar

    [26]

    Michaud-Belleau V, Gaudreau M, Lacoursière J, Boisvert É, Ravelomanantsoa L, Turner D, Rochette L 2025 EGUsphere: 2024-3617 [atmospheric sciences]

    [27]

    赵强, 苏红超, 易明建, 余东升, 徐赤东 2021 中国激光 48 201001

    Zhao Q, Su H C, Yi M J, Yu D S, Xu C D 2021 Chin. J. Lasers 48 2010001

    [28]

    TURNER D 2007 J. Geophys. Res. Atmos. 112 D15

    [29]

    Ishida H, Oishi Y, Morita K, Moriwaki K, Nakajima T 2018 Remote Sens. Environ. 205 390Google Scholar

    [30]

    Wang X P, Zhang F, Kung H T, Johoson V C, Latif A 2020 Int. J. Remote Sens. 41 953Google Scholar

  • [1] 秦成龙, 赵亮, 蒋刚. 机器学习模型预测稀土化合物的热力学稳定性.  , doi: 10.7498/aps.74.20250362
    [2] 吴阳海, 杜海龙, 薛雷, 李佳鲜, 薛淼, 郑国尧. 基于机器学习的托卡马克偏滤器靶板热负荷预测研究.  , doi: 10.7498/aps.74.20250381
    [3] 刘兆圣, 张桥, 宁勇祺, 符秀交, 邹代峰, 王俊年, 赵宇清. 基于机器学习与第一性原理计算的高居里温度Janus预测.  , doi: 10.7498/aps.74.20251026
    [4] 郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博. 分数阶涡旋光衍射过程的机器学习识别.  , doi: 10.7498/aps.74.20241458
    [5] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为.  , doi: 10.7498/aps.74.20241581
    [6] 王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉. 机器学习的量子动力学.  , doi: 10.7498/aps.74.20240999
    [7] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测.  , doi: 10.7498/aps.73.20241278
    [8] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法.  , doi: 10.7498/aps.73.20240747
    [9] 张嘉晖. 蛋白质计算中的机器学习.  , doi: 10.7498/aps.73.20231618
    [10] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变.  , doi: 10.7498/aps.72.20230896
    [11] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用.  , doi: 10.7498/aps.72.20230334
    [12] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法.  , doi: 10.7498/aps.72.20231624
    [13] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用.  , doi: 10.7498/aps.71.20211632
    [14] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计.  , doi: 10.7498/aps.70.20210831
    [15] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习.  , doi: 10.7498/aps.70.20210879
    [16] 孙永丰, 徐亮, 沈先春, 王钰豪, 徐寒杨, 刘文清. 干涉型红外光谱辐射计仪器线型函数仿真及校正.  , doi: 10.7498/aps.70.20210302
    [17] 孙永丰, 徐亮, 沈先春, 金岭, 徐寒杨, 成潇潇, 王钰豪, 刘文清, 刘建国. 红外光谱辐射计探测器高阶非线性响应校正方法.  , doi: 10.7498/aps.70.20201530
    [18] 张瑶, 张云波, 陈立. 基于深度学习的光学表面杂质检测.  , doi: 10.7498/aps.70.20210403
    [19] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究.  , doi: 10.7498/aps.68.20190942
    [20] 顾行发, 陈兴峰, 程天海, 李正强, 余涛, 谢东海, 许华. 多角度偏振遥感相机DPC在轨偏振定标.  , doi: 10.7498/aps.60.070702
计量
  • 文章访问数:  463
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-23
  • 修回日期:  2025-08-11
  • 上网日期:  2025-09-04

/

返回文章
返回
Baidu
map