搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的原子核质量表的进一步探究

刘亚琪 李志龙 王永佳 李庆峰 马春旺

引用本文:
Citation:

基于机器学习的原子核质量表的进一步探究

刘亚琪, 李志龙, 王永佳, 李庆峰, 马春旺

Further exploration of the machine-learning-based nuclear mass table

LIU Yaqi, LI Zhilong, WANG Yongjia, LI Qingfeng, MA Chunwang
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 原子核质量作为原子核的一个基本物理量之一, 对理解和研究原子核结构与核反应、核子核子基本相互作用等有重要作用, 但是精确预测远离 β 稳定线的原子核质量依旧是一个巨大挑战。本文基于机器学习优化的原子核质量表,研究了自 2022 年以来新测量的原子核质量、剩余质子-中子相互作用(δVpn)和重核 α 衰变能。研究表明:(1)对于 23 个新测量原子核,经机器学习优化后的质量表给出的均方根偏差在 0.51-0.58 MeV 之间,远低于液滴模型 (LDM)、 Weizsäcker-Skyrme-4 (WS4)、有限力程小液滴模型 (FRDM)、 Duflo–Zucker (DZ)质量表所给出的 3.275、 1.058、 0.752、 0.785 MeV。(2)机器学习优化后的质量表给出的 N=Z 时原子核的 δVpn与最新的实验数据相符合。(3)通过机器学习优化的原子核质量表计算得到的重核 α 衰变能的均方根偏差也大幅降低。此外,利用贝叶斯模型平均对四种机器学习优化后的质量模型进行加权平均,可以得到更精确的预测。这些结果表明,经过机器学习方法优化后的原子核质量表具有良好的外推能力,可以为相关研究提供有益的参考。本文数据集可在科学数据银行数据库https://doi.org/10.57760/sciencedb.j00213.00246中访问获取 (审稿阶段请通过私有访问链接查看本文数据集https://www.scidb.cn/s/iY3iQn)。
    The mass of the atomic nucleus, as one of the fundamental physical quantities of the atomic nucleus, plays an important role in understanding and researching the structure of the atomic nucleus and nuclear reactions, the basic interactions between nucleons. However, accurately predicting the mass of nuclei far from the β stability line remains a huge challenge. Based on the machine-learning-refined mass model, the newly measured atomic nucleus masses since 2022, the residual proton-neutron interaction (δVpn), and the α-decay energy of heavy nucleus are studied. It is found that: (1) For the 23 newly measured atomic nuclei, the root mean square deviations obtained by the machine-learning-refined mass models are between 0.51 and 0.58 MeV, which are significantly lower than the 3.275, 1.058, 0.752, and 0.785 MeV given by the liquid droplet model (LDM), Weizsäcker-Skyrme-4 (WS4), finite-range droplet model (FRDM), and Duflo-Zucker (DZ), respectively. (2) The δVpn of the atomic nucleus with N=Z obtained from machine-learning-refined mass models is consistent with the latest experimental data. (3) The root mean square deviations of the α-decay energy of heavy nuclei obtained from the machine-learning-refined mass models have also been significantly reduced. Furthermore, by using the Bayesian model average approach to consider the results of different machine-learning-refined mass models, a more accurate prediction can be obtained. These results demonstrate that the machine-learning-refined mass models possess good extrapolation capabilities and can provide useful insight for further researches. The datasets presented in this paper, including the Scientific Data Bank, are openly available at https://doi.org/10.57760/sciencedb.j00213.00246 (Please use the private access link https://www.scidb.cn /s/iY3iQn to access the dataset during the peer review process)
  • [1]

    Alhassan E, Rochman D, Vasiliev A, Hursin M, Koning A J, Ferroukhi H 2022 Nucl. Sci. Tech. 33 50

    [2]

    Wang X H, Zhu L, Su J 2021 Phys. Rev. C 104 034317

    [3]

    He J J, He W B, Ma Y G, Zhang S 2021 Phys. Rev. C 104 044902

    [4]

    Xu J, Xie W J, Li B A 2020 Phys. Rev. C 102 044316

    [5]

    Zhang Z, Feng X B, Chen L W 2021 Chin. Phys. C 45 064104

    [6]

    Li X Z, Zhang Q X, Tan H Y, Cheng Z Q, Ge L Q, Zeng G Q, Lai W C 2021 Nucl. Sci. Tech. 32 143

    [7]

    Pang L G, Zhou K, Su N, Petersen H, Stöcker H, Wang X N 2018 Nat. Commun. 9 210

    [8]

    Li Y Y, Zhang F, Su J 2022 Nucl. Sci. Tech. 33 135

    [9]

    Song Y D, Wang R, Ma Y G, Deng X G, Liu H L 2021 Phys. Lett. B 814 136084

    [10]

    Wu X H, Zhao P W 2024 Sci. China Phys. Mech. 67 272011

    [11]

    Yuan Z Y, Bai D, Wang Z, Ren Z Z 2024 Nucl. Sci. Tech. 35 105

    [12]

    Xu X Y, Deng L, Chen A X, Yang H, Jalili A, Wang H K 2024 Nucl. Sci. Tech. 35 91

    [13]

    Yüksel E, Soydaner D, Bahtiyar H 2024 Phys. Rev. C 109 064322

    [14]

    Li M K, Sprouse T M, Meyer B S, Mumpower M R 2024 Phys. Lett. B 848 138385

    [15]

    Yiu T C, Liang H Z, Lee J 2024 Chin. Phys. C 48 024102

    [16]

    Liu G P, Wang H L, Zhang Z Z, Liu M L 2025 Phys. Rev. C 111 024306

    [17]

    Zhou J, Xu J 2024 Sci. China Phys. Mech. 67 282011

    [18]

    Wei H L, Zhu X, Yuan C 2022 Nucl. Sci. Tech. 33 111

    [19]

    Ma Y F, Su C, Liu J, Ren Z Z, Xu C, Gao Y H 2020 Phys. Rev. C 101 014304

    [20]

    Li Z L, Wang Y J, Li Q F, Lv B F 2025 Phys. Rev. C 112 014312

    [21]

    Wu D, Bai C L, Sagawa H, Zhang H Q 2020 Phys. Rev. C 102 054323

    [22]

    Ye W H, Wan N 2025 arXiv e-prints arXiv

    [23]

    Tang L, Zhang Z H 2024 Nucl. Sci. Tech. 35 19

    [24]

    Li Z L, Lv B F, Wang Y J, Petrache C 2026 Chin. Phys. C

    [25]

    Lv B F, Wang Y J, Li Z L, Petrache C M 2025 Phys. Rev. C 111 064324

    [26]

    Lv B, Li Z, Wang Y, Petrache C 2024 Physics Letters B 857 139013

    [27]

    Li C Q, Tong C N, Du H J, Pang L G 2022 Phys. Rev. C 105 064306

    [28]

    Zhao T L, Zhang H F 2022 J. Phys. G: Nucl. Part. Phys. 49 105104

    [29]

    Fan J N, Shi S H, Xiang H, Fu L, Duan Y J, Cao D S, Lu H W 2024 J. Chem. Inf. Model. 64 3080

    [30]

    Li T, Wang N, Li C, Liu M 2025 Phys. Rev. C 112 024306

    [31]

    Wei K W, Shang T S, Tian R H, Yang D, Li C J, Chen J, Li J, Huang X L, Zhu J L 2025 Acta Phys. Sin. 74 182901 (in Chinese) [魏凯文, 尚天帅, 田榕赫, 杨东, 李春娟, 陈军, 李剑, 黄小龙, 朱佳丽 2025 74 182901]

    [32]

    Ma Y G, Pang L G, Wang R, Zhou K 2023 Chin. Phys. Lett. 40 122101

    [33]

    He W B, Ma Y G, Pang L G, Song H C, Zhou K 2023 Nucl. Sci. Tech. 34 88

    [34]

    He W B, Li Q F, Ma Y G, Niu Z M, Pei J C, Zhang Y X 2023 Sci. China Phys. Mech. 66 282001

    [35]

    Li Z L, Gao Z P, Liu L, Wang Y J, Zhu L, Li Q F 2024 Phys. Rev. C 109 024604

    [36]

    Gao Z P, Liu S Y, Wen P W, Liao Z H, Yang Y, Su J, Wang Y J, Zhu L 2024 Phys. Rev. C 109 024601

    [37]

    Qiao C Y, Pei J C, Wang Z A, Qiang Y, Chen Y J, Shu N C, Ge Z G 2021 Phys. Rev. C 103 034621

    [38]

    Feng Z Y, Tian J L, Wu T, Wei G J, Li Z L, Shi X Q, Wang Y J, Li Q F 2024 Nucl. Sci. Tech. 35 93

    [39]

    Tian J L, Feng J X, Shen J C, Yao L, Wang J Y, Wu T, Zhao Y L 2025 Nucl. Sci. Tech. 36 1

    [40]

    Ma C W, Wei X B, Chen X X, Peng D, Wang Y T, Pu J, Cheng K X, Guo Y F, Wei H L 2022 Chin. Phys. C 46 074104

    [41]

    Ma C W, Peng D, Wei H L, Niu Z M, Wang Y T, Wada R 2020 Chin. Phys. C 44 014104

    [42]

    Bao M, Jiang H, Zhao Y M 2023 Nucl. Phys. Rev. 40 141 (in Chinese) [鲍曼, 姜慧, 赵玉民 2023 原子核物理评论 40 141]

    [43]

    Möller P, Myers W D, Sagawa H, Yoshida S 2012 Phys. Rev. Lett. 108 052501

    [44]

    Duflo J, Zuker A P 1995 Phys. Rev. C 52 R23

    [45]

    Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215

    [46]

    Geng L S, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785

    [47]

    Xia X W, Lim Y, Zhao P W, Liang H Z, Qu X Y, Chen Y, Liu H, Zhang L F, Zhang S Q, Kim Y, Meng J 2018 At. Data Nucl. Data Tables 121 1

    [48]

    Goriely S, Chamel N, Pearson J M 2009 Phys. Rev. Lett. 102 152503

    [49]

    Goriely S, Hilaire S, Girod M, Péru S 2009 Phys. Rev. Lett. 102 242501

    [50]

    Zhang K Y, He X T, Meng J, Pan C, Shen C W, Wang C, Zhang S Q 2021 Phys. Rev. C 104 L021301

    [51]

    Kondev F, Wang M, Huang W, Naimi S, Audi G 2021 Chin. Phys. C 45 030001

    [52]

    Niu Z M, Liang H Z 2022 Phys. Rev. C 106 L021303

    [53]

    Niu Z M, Liang H Z 2018 Phys. Lett. B 778 48

    [54]

    Wu X H, Lu Y Y, Zhao P W 2022 Phys. Lett. B 834 137394

    [55]

    Gao Z P, Wang Y J, Lü H L, Li Q F, Shen C W, Liu L 2021 Nucl. Sci. Tech. 32 109

    [56]

    Kondev F G, Naimi S 2017 Chin. Phys. C 41 030003

    [57]

    Yuan Q N, Qi P P, Xiao X P, Wang X, He J, Long G M, Duan Z W, Dai Y Y, Yan R C, Yu G M, Yang H T, Qiang H 2025 arXiv preprint arXiv:2508.03155

    [58]

    Wang M, Zhang Y H, Zhou X, Zhou X H, Xu H S, Liu M L, Li J G, Niu Y F, Huang W J, Yuan Q, Zhang S, Xu F R, Litvinov Y A, Blaum K, Meisel Z, Casten R F, Cakirli R B, Chen R J, Deng H Y, Fu C Y, Ge W W, Li H F, Liao T, Litvinov S A, Shuai P, Shi J Y, Song Y N, Sun M Z, Wang Q, Xing Y M, Xu X, Yan X L, Yang J C, Yuan Y J, Zeng Q, Zhang M 2023 Phys. Rev. Lett. 130 192501

    [59]

    Hinne M, Gronau Q F, Van Den Bergh D, Wagenmakers E J 2020 Adv. Methods Pract. Psychol. Sci. 3 200

    [60]

    Hoeting J A, Madigan D, Raftery A E, Volinsky C T 1999 Stat. Sci. 14 382

    [61]

    Guan D W, Pei J C 2024 Phys. Lett. B 851 138578

    [62]

    Zhang X Y, Li W F, Fang J Y, Niu Z M 2024 Nucl. Phys. A 1043 122820

    [63]

    Ge Z, Reponen M, Eronen T, Hu B, Kortelainen M, Kankainen A, Moore I, Nesterenko D, Yuan C X, Beliuskina O, Cañete L, Groote R, Delafosse C, Dickel T, Roubin A, Geldhof S, Gins W, Holt J D, Hukkanen M, Jaries A, Jokinen A, Koszorús ff, Kripkó-Koncz G, Kujanpää S, Lam Y H, Nikas S, Ortiz-Cortes A, Penttilä H, PitmanWeymouth D, Plaß W, Pohjalainen I, Raggio A, Rinta-Antila S, Romero J, Stryjczyk M, Vilen M, Virtanen V, Zadvornaya A 2024 Phys. Rev. Lett. 133 132503

    [64]

    Agrawal S, Chandnani N, Ghosh T, Saxena G, Agrawal B K, Paar N 2025 arXiv preprint arXiv:2508.21771

    [65]

    Yang H, Chen C Y, Xu X Y, Wang H K, Wang Y B 2025 Nucl. Sci. Tech. 36 129

    [66]

    Collaboration S N 2024 Phys. Rev. Lett. 133 082501

    [67]

    Yu Y, Xing Y M, Zhang Y H, Wang M, Zhou X H, Li J G, Li H H, Yuan Q, Niu Y F, Huang Y N, Geng J, Guo J Y, Chen J W, Pei J C, Xu F R, Litvinov Y A, Blaum K, Angelis G, Tanihata I, Yamaguchi T, Zhou X, Xu H S, Chen Z Y, Chen R J, Deng H Y, Fu C Y, Ge W W, Huang W J, Jiao H Y, Luo Y F, Li H F, Liao T, Shi J Y, Si M, Sun M Z, Shuai P, Tu X L, Wang Q, Xu X, Yan X L, Yuan Y J, Zhang M 2024 Phys. Rev. Lett. 133 222501

    [68]

    Dronchi N, Charity R J, Sobotka L G, Brown B A, Weisshaar D, Gade A, Brown K W, Reviol W, Bazin D, Farris P J, Hill A M, Li J, Longfellow B, Rhodes D, Paneru S N, Gillespie S A, Anthony A K, Rubino E, Biswas S 2024 Phys. Rev. C 110 L031302

    [69]

    Lalanne L, Sorlin O, Poves A, Assié M, Hammache F, Koyama S, Suzuki D, Flavigny F, Girard-Alcindor V, Lemasson A, Matta A, Roger T, Beaumel D, Blumenfeld Y, Brown B, De Oliveira Santos F, Delaunay F, de Séréville N, Franchoo S, Gibelin J, Guillot J, Kamalou O, Kitamura N, Lapoux V, Mauss B, Morfouace P, Pancin J, Saito T Y, Stodel C, Thomas J C 2023 Phys. Rev. Lett. 131 092501

    [70]

    Silwal R, Andreoiu C, Ashrafkhani B, Bergmann J, Brunner T, Cardona J, Dietrich K, Dunling E, Gwinner G, Hockenbery Z, Holt J D, Izzo C, Jacobs A, Javaji A, Kootte B, Lan Y, Lunney D, Lykiardopoulou E M, Miyagi T, Mougeot M, Mukul I, Murböck T, Porter W S, Reiter M, Ringuette J, Dilling J, Kwiatkowski A A 2022 Phys. Lett. B 833 137288

    [71]

    Wang K L, Estrade A, Famiano M, Schatz H, Barber M, Baumann T, Bazin D, Bhatt K, Chapman T, Dopfer J, Famiano B, George S, Giles M, Ginter T, Jenkins J, Jin S, Klankowski L, Liddick S, Meisel Z, Nepal N, Pereira J, Rijal N, Rogers A M, Tarasov O, Zimba G 2024 Phys. Rev. C 109 035806

    [72]

    Hamaker A, Leistenschneider E, Jain R, Bollen G, Giuliani S A, Lund K, Nazarewicz W, Neufcourt L, Nicoloff C R, Puentes D, Ringle R, Sumithrarachchi C S, Yandow I T 2021 Nat. Phys. 17 1408

    [73]

    Mougeot M, Atanasov D, Karthein J, Wolf R N, Ascher P, Blaum K, Chrysalidis K, Hagen G, Holt J D, Huang W J, Ascher P, Blaum K, Jansen G R, Kulikov I, Litvinov Y A, Lunney D, Manea V, Miyagi T, Papenbrock T, Schweikhard L, Schwenk A, Steinsberger T, Stroberg S R, Wilkins S G, Zuber K 2021 Nat. Phys. 17 1099

    [74]

    Ray D, Vassh N, Liu B, Valverde A A, Brodeur M, Clark J A, McLaughlin G C, Mumpower M R, Orford R, Porter W S, Savard G, Sharma K S, Surman R, Buchinger F, Burdette D P, Callahan N, Gallant A T, Hoff D E M, Kolos K, Kondev F G, Morgan G E, Rivero F, Santiago-Gonzalez D, Scielzo N D, Varriano L, Weber C M, Wilson G E, Yan X L 2024 arXiv preprint arXiv:2411.06310

    [75]

    Spătaru A, Kripkó-Koncz G, Dickel T, Hornung C, Plaß W R, Constantin P, Amanbayev D, Ayet San Andrés S, Balabanski D L, Beck S, Bergmann J, Geissel H, Kalantar-Nayestanaki N, Kehat J, Mardor I, Minkov N, Mollaebrahimi A, Scheidenberger C, Wasserheß M, Wilsenach H, Zhao J W 2025 Phys. Rev. C 111 054307

    [76]

    Schatz H, Bildsten L, Cumming A, Ouellette M 2003 Nucl. Phys. A 718 247

    [77]

    Wang Y P, Wang Y K, Xu F F, Zhao P W, Meng J 2024 Phys. Rev. Lett. 132 232501

    [78]

    https://github.com/lzl888-afk/Further-exploration-of-the-machine-learning-based-nuclear-mass-table

    [79]

    Xing F Z, Yue X K, Wang N, Wang Y Z 2025 Acta Phys. Sin. 74 112301 (in Chinese) [邢凤竹, 乐先凯, 王楠, 王艳召 2025 74 112301]

    [80]

    Chen H J, Sheng H W, Huang W H, Wu B Q, Zhao T L, Bao X J 2025 Acta Phys. Sin. 74 192301 (in Chinese)[陈海军, 盛浩文, 黄文豪, 吴彬琪, 赵天亮, 包小军 2025 74 192301]

    [81]

    Jiang Y M, Zhang D D, Zhou S G 2025 Phys. 54 599

    [82]

    Fang Y P, Gao Z P, Zhang Y N, Liao Z H, Yang Y, Su J, Zhu L 2024 Phys. Lett. B 858 139069

  • [1] 李雨婷, 杨炯, 奚晋扬. 机器学习赋能电子结构计算: 进展、挑战与展望.  , doi: 10.7498/aps.75.20251253
    [2] 张旭喆, 李佳星, 陈婉玲, 张鸿飞. 机器学习在裂变势垒高度和基态结合能中的应用.  , doi: 10.7498/aps.75.20251278
    [3] 王东东, 李鹏, 王之恒. 基于中子和质子分离能约束的神经网络对原子核质量的预测.  , doi: 10.7498/aps.75.20251315
    [4] 武庆, 牛中明, 梁豪兆. 原子核质量不确定性对β衰变半衰期和中子俘获率的影响.  , doi: 10.7498/aps.75.20251195
    [5] 王越, 叶函函, 熊伟, 王先华, 施海亮, 李超, 程晨, 吴时超. 一种光谱特征增强驱动的机器学习地基红外高光谱云检测方法.  , doi: 10.7498/aps.74.20250982
    [6] 郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博. 分数阶涡旋光衍射过程的机器学习识别.  , doi: 10.7498/aps.74.20241458
    [7] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为.  , doi: 10.7498/aps.74.20241581
    [8] 王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉. 机器学习的量子动力学.  , doi: 10.7498/aps.74.20240999
    [9] 陈海军, 盛浩文, 黄文豪, 吴彬琪, 赵天亮, 包小军. 基于神经网络方法研究超重核的稳定性和衰变性质.  , doi: 10.7498/aps.74.20250720
    [10] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法.  , doi: 10.7498/aps.73.20240747
    [11] 张嘉晖. 蛋白质计算中的机器学习.  , doi: 10.7498/aps.73.20231618
    [12] 邓祥文, 伍力源, 赵锐, 王嘉鸥, 赵丽娜. 机器学习在光电子能谱中的应用及展望.  , doi: 10.7498/aps.73.20240957
    [13] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变.  , doi: 10.7498/aps.72.20230896
    [14] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用.  , doi: 10.7498/aps.72.20230334
    [15] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法.  , doi: 10.7498/aps.72.20231624
    [16] 应大卫, 张思慧, 邓书金, 武海斌. 基于机器学习的单拍冷原子成像.  , doi: 10.7498/aps.72.20230449
    [17] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计.  , doi: 10.7498/aps.70.20210831
    [18] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习.  , doi: 10.7498/aps.70.20210879
    [19] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究.  , doi: 10.7498/aps.68.20190942
    [20] 张珈铭, 徐晓栋, 孙保华. 基于(p,)-(,p)平衡近似的快质子俘获过程模型及其应用.  , doi: 10.7498/aps.62.132501
计量
  • 文章访问数:  23
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-25

/

返回文章
返回
Baidu
map