-
原子核质量作为原子核的一个基本物理量之一, 对理解和研究原子核结构与核反应、核子核子基本相互作用等有重要作用, 但是精确预测远离 β 稳定线的原子核质量依旧是一个巨大挑战。本文基于机器学习优化的原子核质量表,研究了自 2022 年以来新测量的原子核质量、剩余质子-中子相互作用(δVpn)和重核 α 衰变能。研究表明:(1)对于 23 个新测量原子核,经机器学习优化后的质量表给出的均方根偏差在 0.51-0.58 MeV 之间,远低于液滴模型 (LDM)、 Weizsäcker-Skyrme-4 (WS4)、有限力程小液滴模型 (FRDM)、 Duflo–Zucker (DZ)质量表所给出的 3.275、 1.058、 0.752、 0.785 MeV。(2)机器学习优化后的质量表给出的 N=Z 时原子核的 δVpn与最新的实验数据相符合。(3)通过机器学习优化的原子核质量表计算得到的重核 α 衰变能的均方根偏差也大幅降低。此外,利用贝叶斯模型平均对四种机器学习优化后的质量模型进行加权平均,可以得到更精确的预测。这些结果表明,经过机器学习方法优化后的原子核质量表具有良好的外推能力,可以为相关研究提供有益的参考。本文数据集可在科学数据银行数据库https://doi.org/10.57760/sciencedb.j00213.00246中访问获取 (审稿阶段请通过私有访问链接查看本文数据集https://www.scidb.cn/s/iY3iQn)。
-
关键词:
- 机器学习 /
- 原子核质量 /
- 剩余质子-中子相互作用 /
- α 衰变能
The mass of the atomic nucleus, as one of the fundamental physical quantities of the atomic nucleus, plays an important role in understanding and researching the structure of the atomic nucleus and nuclear reactions, the basic interactions between nucleons. However, accurately predicting the mass of nuclei far from the β stability line remains a huge challenge. Based on the machine-learning-refined mass model, the newly measured atomic nucleus masses since 2022, the residual proton-neutron interaction (δVpn), and the α-decay energy of heavy nucleus are studied. It is found that: (1) For the 23 newly measured atomic nuclei, the root mean square deviations obtained by the machine-learning-refined mass models are between 0.51 and 0.58 MeV, which are significantly lower than the 3.275, 1.058, 0.752, and 0.785 MeV given by the liquid droplet model (LDM), Weizsäcker-Skyrme-4 (WS4), finite-range droplet model (FRDM), and Duflo-Zucker (DZ), respectively. (2) The δVpn of the atomic nucleus with N=Z obtained from machine-learning-refined mass models is consistent with the latest experimental data. (3) The root mean square deviations of the α-decay energy of heavy nuclei obtained from the machine-learning-refined mass models have also been significantly reduced. Furthermore, by using the Bayesian model average approach to consider the results of different machine-learning-refined mass models, a more accurate prediction can be obtained. These results demonstrate that the machine-learning-refined mass models possess good extrapolation capabilities and can provide useful insight for further researches. The datasets presented in this paper, including the Scientific Data Bank, are openly available at https://doi.org/10.57760/sciencedb.j00213.00246 (Please use the private access link https://www.scidb.cn /s/iY3iQn to access the dataset during the peer review process)-
Keywords:
- Machine Learning /
- atomic nucleus mass /
- residual proton-neutron interaction /
- α-decay energy
-
[1] Alhassan E, Rochman D, Vasiliev A, Hursin M, Koning A J, Ferroukhi H 2022 Nucl. Sci. Tech. 33 50
[2] Wang X H, Zhu L, Su J 2021 Phys. Rev. C 104 034317
[3] He J J, He W B, Ma Y G, Zhang S 2021 Phys. Rev. C 104 044902
[4] Xu J, Xie W J, Li B A 2020 Phys. Rev. C 102 044316
[5] Zhang Z, Feng X B, Chen L W 2021 Chin. Phys. C 45 064104
[6] Li X Z, Zhang Q X, Tan H Y, Cheng Z Q, Ge L Q, Zeng G Q, Lai W C 2021 Nucl. Sci. Tech. 32 143
[7] Pang L G, Zhou K, Su N, Petersen H, Stöcker H, Wang X N 2018 Nat. Commun. 9 210
[8] Li Y Y, Zhang F, Su J 2022 Nucl. Sci. Tech. 33 135
[9] Song Y D, Wang R, Ma Y G, Deng X G, Liu H L 2021 Phys. Lett. B 814 136084
[10] Wu X H, Zhao P W 2024 Sci. China Phys. Mech. 67 272011
[11] Yuan Z Y, Bai D, Wang Z, Ren Z Z 2024 Nucl. Sci. Tech. 35 105
[12] Xu X Y, Deng L, Chen A X, Yang H, Jalili A, Wang H K 2024 Nucl. Sci. Tech. 35 91
[13] Yüksel E, Soydaner D, Bahtiyar H 2024 Phys. Rev. C 109 064322
[14] Li M K, Sprouse T M, Meyer B S, Mumpower M R 2024 Phys. Lett. B 848 138385
[15] Yiu T C, Liang H Z, Lee J 2024 Chin. Phys. C 48 024102
[16] Liu G P, Wang H L, Zhang Z Z, Liu M L 2025 Phys. Rev. C 111 024306
[17] Zhou J, Xu J 2024 Sci. China Phys. Mech. 67 282011
[18] Wei H L, Zhu X, Yuan C 2022 Nucl. Sci. Tech. 33 111
[19] Ma Y F, Su C, Liu J, Ren Z Z, Xu C, Gao Y H 2020 Phys. Rev. C 101 014304
[20] Li Z L, Wang Y J, Li Q F, Lv B F 2025 Phys. Rev. C 112 014312
[21] Wu D, Bai C L, Sagawa H, Zhang H Q 2020 Phys. Rev. C 102 054323
[22] Ye W H, Wan N 2025 arXiv e-prints arXiv
[23] Tang L, Zhang Z H 2024 Nucl. Sci. Tech. 35 19
[24] Li Z L, Lv B F, Wang Y J, Petrache C 2026 Chin. Phys. C
[25] Lv B F, Wang Y J, Li Z L, Petrache C M 2025 Phys. Rev. C 111 064324
[26] Lv B, Li Z, Wang Y, Petrache C 2024 Physics Letters B 857 139013
[27] Li C Q, Tong C N, Du H J, Pang L G 2022 Phys. Rev. C 105 064306
[28] Zhao T L, Zhang H F 2022 J. Phys. G: Nucl. Part. Phys. 49 105104
[29] Fan J N, Shi S H, Xiang H, Fu L, Duan Y J, Cao D S, Lu H W 2024 J. Chem. Inf. Model. 64 3080
[30] Li T, Wang N, Li C, Liu M 2025 Phys. Rev. C 112 024306
[31] Wei K W, Shang T S, Tian R H, Yang D, Li C J, Chen J, Li J, Huang X L, Zhu J L 2025 Acta Phys. Sin. 74 182901 (in Chinese) [魏凯文, 尚天帅, 田榕赫, 杨东, 李春娟, 陈军, 李剑, 黄小龙, 朱佳丽 2025 74 182901]
[32] Ma Y G, Pang L G, Wang R, Zhou K 2023 Chin. Phys. Lett. 40 122101
[33] He W B, Ma Y G, Pang L G, Song H C, Zhou K 2023 Nucl. Sci. Tech. 34 88
[34] He W B, Li Q F, Ma Y G, Niu Z M, Pei J C, Zhang Y X 2023 Sci. China Phys. Mech. 66 282001
[35] Li Z L, Gao Z P, Liu L, Wang Y J, Zhu L, Li Q F 2024 Phys. Rev. C 109 024604
[36] Gao Z P, Liu S Y, Wen P W, Liao Z H, Yang Y, Su J, Wang Y J, Zhu L 2024 Phys. Rev. C 109 024601
[37] Qiao C Y, Pei J C, Wang Z A, Qiang Y, Chen Y J, Shu N C, Ge Z G 2021 Phys. Rev. C 103 034621
[38] Feng Z Y, Tian J L, Wu T, Wei G J, Li Z L, Shi X Q, Wang Y J, Li Q F 2024 Nucl. Sci. Tech. 35 93
[39] Tian J L, Feng J X, Shen J C, Yao L, Wang J Y, Wu T, Zhao Y L 2025 Nucl. Sci. Tech. 36 1
[40] Ma C W, Wei X B, Chen X X, Peng D, Wang Y T, Pu J, Cheng K X, Guo Y F, Wei H L 2022 Chin. Phys. C 46 074104
[41] Ma C W, Peng D, Wei H L, Niu Z M, Wang Y T, Wada R 2020 Chin. Phys. C 44 014104
[42] Bao M, Jiang H, Zhao Y M 2023 Nucl. Phys. Rev. 40 141 (in Chinese) [鲍曼, 姜慧, 赵玉民 2023 原子核物理评论 40 141]
[43] Möller P, Myers W D, Sagawa H, Yoshida S 2012 Phys. Rev. Lett. 108 052501
[44] Duflo J, Zuker A P 1995 Phys. Rev. C 52 R23
[45] Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215
[46] Geng L S, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785
[47] Xia X W, Lim Y, Zhao P W, Liang H Z, Qu X Y, Chen Y, Liu H, Zhang L F, Zhang S Q, Kim Y, Meng J 2018 At. Data Nucl. Data Tables 121 1
[48] Goriely S, Chamel N, Pearson J M 2009 Phys. Rev. Lett. 102 152503
[49] Goriely S, Hilaire S, Girod M, Péru S 2009 Phys. Rev. Lett. 102 242501
[50] Zhang K Y, He X T, Meng J, Pan C, Shen C W, Wang C, Zhang S Q 2021 Phys. Rev. C 104 L021301
[51] Kondev F, Wang M, Huang W, Naimi S, Audi G 2021 Chin. Phys. C 45 030001
[52] Niu Z M, Liang H Z 2022 Phys. Rev. C 106 L021303
[53] Niu Z M, Liang H Z 2018 Phys. Lett. B 778 48
[54] Wu X H, Lu Y Y, Zhao P W 2022 Phys. Lett. B 834 137394
[55] Gao Z P, Wang Y J, Lü H L, Li Q F, Shen C W, Liu L 2021 Nucl. Sci. Tech. 32 109
[56] Kondev F G, Naimi S 2017 Chin. Phys. C 41 030003
[57] Yuan Q N, Qi P P, Xiao X P, Wang X, He J, Long G M, Duan Z W, Dai Y Y, Yan R C, Yu G M, Yang H T, Qiang H 2025 arXiv preprint arXiv:2508.03155
[58] Wang M, Zhang Y H, Zhou X, Zhou X H, Xu H S, Liu M L, Li J G, Niu Y F, Huang W J, Yuan Q, Zhang S, Xu F R, Litvinov Y A, Blaum K, Meisel Z, Casten R F, Cakirli R B, Chen R J, Deng H Y, Fu C Y, Ge W W, Li H F, Liao T, Litvinov S A, Shuai P, Shi J Y, Song Y N, Sun M Z, Wang Q, Xing Y M, Xu X, Yan X L, Yang J C, Yuan Y J, Zeng Q, Zhang M 2023 Phys. Rev. Lett. 130 192501
[59] Hinne M, Gronau Q F, Van Den Bergh D, Wagenmakers E J 2020 Adv. Methods Pract. Psychol. Sci. 3 200
[60] Hoeting J A, Madigan D, Raftery A E, Volinsky C T 1999 Stat. Sci. 14 382
[61] Guan D W, Pei J C 2024 Phys. Lett. B 851 138578
[62] Zhang X Y, Li W F, Fang J Y, Niu Z M 2024 Nucl. Phys. A 1043 122820
[63] Ge Z, Reponen M, Eronen T, Hu B, Kortelainen M, Kankainen A, Moore I, Nesterenko D, Yuan C X, Beliuskina O, Cañete L, Groote R, Delafosse C, Dickel T, Roubin A, Geldhof S, Gins W, Holt J D, Hukkanen M, Jaries A, Jokinen A, Koszorús ff, Kripkó-Koncz G, Kujanpää S, Lam Y H, Nikas S, Ortiz-Cortes A, Penttilä H, PitmanWeymouth D, Plaß W, Pohjalainen I, Raggio A, Rinta-Antila S, Romero J, Stryjczyk M, Vilen M, Virtanen V, Zadvornaya A 2024 Phys. Rev. Lett. 133 132503
[64] Agrawal S, Chandnani N, Ghosh T, Saxena G, Agrawal B K, Paar N 2025 arXiv preprint arXiv:2508.21771
[65] Yang H, Chen C Y, Xu X Y, Wang H K, Wang Y B 2025 Nucl. Sci. Tech. 36 129
[66] Collaboration S N 2024 Phys. Rev. Lett. 133 082501
[67] Yu Y, Xing Y M, Zhang Y H, Wang M, Zhou X H, Li J G, Li H H, Yuan Q, Niu Y F, Huang Y N, Geng J, Guo J Y, Chen J W, Pei J C, Xu F R, Litvinov Y A, Blaum K, Angelis G, Tanihata I, Yamaguchi T, Zhou X, Xu H S, Chen Z Y, Chen R J, Deng H Y, Fu C Y, Ge W W, Huang W J, Jiao H Y, Luo Y F, Li H F, Liao T, Shi J Y, Si M, Sun M Z, Shuai P, Tu X L, Wang Q, Xu X, Yan X L, Yuan Y J, Zhang M 2024 Phys. Rev. Lett. 133 222501
[68] Dronchi N, Charity R J, Sobotka L G, Brown B A, Weisshaar D, Gade A, Brown K W, Reviol W, Bazin D, Farris P J, Hill A M, Li J, Longfellow B, Rhodes D, Paneru S N, Gillespie S A, Anthony A K, Rubino E, Biswas S 2024 Phys. Rev. C 110 L031302
[69] Lalanne L, Sorlin O, Poves A, Assié M, Hammache F, Koyama S, Suzuki D, Flavigny F, Girard-Alcindor V, Lemasson A, Matta A, Roger T, Beaumel D, Blumenfeld Y, Brown B, De Oliveira Santos F, Delaunay F, de Séréville N, Franchoo S, Gibelin J, Guillot J, Kamalou O, Kitamura N, Lapoux V, Mauss B, Morfouace P, Pancin J, Saito T Y, Stodel C, Thomas J C 2023 Phys. Rev. Lett. 131 092501
[70] Silwal R, Andreoiu C, Ashrafkhani B, Bergmann J, Brunner T, Cardona J, Dietrich K, Dunling E, Gwinner G, Hockenbery Z, Holt J D, Izzo C, Jacobs A, Javaji A, Kootte B, Lan Y, Lunney D, Lykiardopoulou E M, Miyagi T, Mougeot M, Mukul I, Murböck T, Porter W S, Reiter M, Ringuette J, Dilling J, Kwiatkowski A A 2022 Phys. Lett. B 833 137288
[71] Wang K L, Estrade A, Famiano M, Schatz H, Barber M, Baumann T, Bazin D, Bhatt K, Chapman T, Dopfer J, Famiano B, George S, Giles M, Ginter T, Jenkins J, Jin S, Klankowski L, Liddick S, Meisel Z, Nepal N, Pereira J, Rijal N, Rogers A M, Tarasov O, Zimba G 2024 Phys. Rev. C 109 035806
[72] Hamaker A, Leistenschneider E, Jain R, Bollen G, Giuliani S A, Lund K, Nazarewicz W, Neufcourt L, Nicoloff C R, Puentes D, Ringle R, Sumithrarachchi C S, Yandow I T 2021 Nat. Phys. 17 1408
[73] Mougeot M, Atanasov D, Karthein J, Wolf R N, Ascher P, Blaum K, Chrysalidis K, Hagen G, Holt J D, Huang W J, Ascher P, Blaum K, Jansen G R, Kulikov I, Litvinov Y A, Lunney D, Manea V, Miyagi T, Papenbrock T, Schweikhard L, Schwenk A, Steinsberger T, Stroberg S R, Wilkins S G, Zuber K 2021 Nat. Phys. 17 1099
[74] Ray D, Vassh N, Liu B, Valverde A A, Brodeur M, Clark J A, McLaughlin G C, Mumpower M R, Orford R, Porter W S, Savard G, Sharma K S, Surman R, Buchinger F, Burdette D P, Callahan N, Gallant A T, Hoff D E M, Kolos K, Kondev F G, Morgan G E, Rivero F, Santiago-Gonzalez D, Scielzo N D, Varriano L, Weber C M, Wilson G E, Yan X L 2024 arXiv preprint arXiv:2411.06310
[75] Spătaru A, Kripkó-Koncz G, Dickel T, Hornung C, Plaß W R, Constantin P, Amanbayev D, Ayet San Andrés S, Balabanski D L, Beck S, Bergmann J, Geissel H, Kalantar-Nayestanaki N, Kehat J, Mardor I, Minkov N, Mollaebrahimi A, Scheidenberger C, Wasserheß M, Wilsenach H, Zhao J W 2025 Phys. Rev. C 111 054307
[76] Schatz H, Bildsten L, Cumming A, Ouellette M 2003 Nucl. Phys. A 718 247
[77] Wang Y P, Wang Y K, Xu F F, Zhao P W, Meng J 2024 Phys. Rev. Lett. 132 232501
[78] https://github.com/lzl888-afk/Further-exploration-of-the-machine-learning-based-nuclear-mass-table
[79] Xing F Z, Yue X K, Wang N, Wang Y Z 2025 Acta Phys. Sin. 74 112301 (in Chinese) [邢凤竹, 乐先凯, 王楠, 王艳召 2025 74 112301]
[80] Chen H J, Sheng H W, Huang W H, Wu B Q, Zhao T L, Bao X J 2025 Acta Phys. Sin. 74 192301 (in Chinese)[陈海军, 盛浩文, 黄文豪, 吴彬琪, 赵天亮, 包小军 2025 74 192301]
[81] Jiang Y M, Zhang D D, Zhou S G 2025 Phys. 54 599
[82] Fang Y P, Gao Z P, Zhang Y N, Liao Z H, Yang Y, Su J, Zhu L 2024 Phys. Lett. B 858 139069
计量
- 文章访问数: 23
- PDF下载量: 1
- 被引次数: 0








下载: