Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Further exploration of the machine-learning-based nuclear mass table

LIU Yaqi LI Zhilong WANG Yongjia LI Qingfeng MA Chunwang

Citation:

Further exploration of the machine-learning-based nuclear mass table

LIU Yaqi, LI Zhilong, WANG Yongjia, LI Qingfeng, MA Chunwang
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The mass of the atomic nucleus, as one of the fundamental physical quantities of the atomic nucleus, plays an important role in understanding and researching the structure of the atomic nucleus and nuclear reactions, the basic interactions between nucleons. However, accurately predicting the mass of nuclei far from the β stability line remains a huge challenge. Based on the machine-learning-refined mass model, the newly measured atomic nucleus masses since 2022, the residual proton-neutron interaction (δVpn), and the α-decay energy of heavy nucleus are studied. It is found that: (1) For the 23 newly measured atomic nuclei, the root mean square deviations obtained by the machine-learning-refined mass models are between 0.51 and 0.58 MeV, which are significantly lower than the 3.275, 1.058, 0.752, and 0.785 MeV given by the liquid droplet model (LDM), Weizsäcker-Skyrme-4 (WS4), finite-range droplet model (FRDM), and Duflo-Zucker (DZ), respectively. (2) The δVpn of the atomic nucleus with N=Z obtained from machine-learning-refined mass models is consistent with the latest experimental data. (3) The root mean square deviations of the α-decay energy of heavy nuclei obtained from the machine-learning-refined mass models have also been significantly reduced. Furthermore, by using the Bayesian model average approach to consider the results of different machine-learning-refined mass models, a more accurate prediction can be obtained. These results demonstrate that the machine-learning-refined mass models possess good extrapolation capabilities and can provide useful insight for further researches. The datasets presented in this paper, including the Scientific Data Bank, are openly available at https://doi.org/10.57760/sciencedb.j00213.00246 (Please use the private access link https://www.scidb.cn /s/iY3iQn to access the dataset during the peer review process)
  • [1]

    Alhassan E, Rochman D, Vasiliev A, Hursin M, Koning A J, Ferroukhi H 2022 Nucl. Sci. Tech. 33 50

    [2]

    Wang X H, Zhu L, Su J 2021 Phys. Rev. C 104 034317

    [3]

    He J J, He W B, Ma Y G, Zhang S 2021 Phys. Rev. C 104 044902

    [4]

    Xu J, Xie W J, Li B A 2020 Phys. Rev. C 102 044316

    [5]

    Zhang Z, Feng X B, Chen L W 2021 Chin. Phys. C 45 064104

    [6]

    Li X Z, Zhang Q X, Tan H Y, Cheng Z Q, Ge L Q, Zeng G Q, Lai W C 2021 Nucl. Sci. Tech. 32 143

    [7]

    Pang L G, Zhou K, Su N, Petersen H, Stöcker H, Wang X N 2018 Nat. Commun. 9 210

    [8]

    Li Y Y, Zhang F, Su J 2022 Nucl. Sci. Tech. 33 135

    [9]

    Song Y D, Wang R, Ma Y G, Deng X G, Liu H L 2021 Phys. Lett. B 814 136084

    [10]

    Wu X H, Zhao P W 2024 Sci. China Phys. Mech. 67 272011

    [11]

    Yuan Z Y, Bai D, Wang Z, Ren Z Z 2024 Nucl. Sci. Tech. 35 105

    [12]

    Xu X Y, Deng L, Chen A X, Yang H, Jalili A, Wang H K 2024 Nucl. Sci. Tech. 35 91

    [13]

    Yüksel E, Soydaner D, Bahtiyar H 2024 Phys. Rev. C 109 064322

    [14]

    Li M K, Sprouse T M, Meyer B S, Mumpower M R 2024 Phys. Lett. B 848 138385

    [15]

    Yiu T C, Liang H Z, Lee J 2024 Chin. Phys. C 48 024102

    [16]

    Liu G P, Wang H L, Zhang Z Z, Liu M L 2025 Phys. Rev. C 111 024306

    [17]

    Zhou J, Xu J 2024 Sci. China Phys. Mech. 67 282011

    [18]

    Wei H L, Zhu X, Yuan C 2022 Nucl. Sci. Tech. 33 111

    [19]

    Ma Y F, Su C, Liu J, Ren Z Z, Xu C, Gao Y H 2020 Phys. Rev. C 101 014304

    [20]

    Li Z L, Wang Y J, Li Q F, Lv B F 2025 Phys. Rev. C 112 014312

    [21]

    Wu D, Bai C L, Sagawa H, Zhang H Q 2020 Phys. Rev. C 102 054323

    [22]

    Ye W H, Wan N 2025 arXiv e-prints arXiv

    [23]

    Tang L, Zhang Z H 2024 Nucl. Sci. Tech. 35 19

    [24]

    Li Z L, Lv B F, Wang Y J, Petrache C 2026 Chin. Phys. C

    [25]

    Lv B F, Wang Y J, Li Z L, Petrache C M 2025 Phys. Rev. C 111 064324

    [26]

    Lv B, Li Z, Wang Y, Petrache C 2024 Physics Letters B 857 139013

    [27]

    Li C Q, Tong C N, Du H J, Pang L G 2022 Phys. Rev. C 105 064306

    [28]

    Zhao T L, Zhang H F 2022 J. Phys. G: Nucl. Part. Phys. 49 105104

    [29]

    Fan J N, Shi S H, Xiang H, Fu L, Duan Y J, Cao D S, Lu H W 2024 J. Chem. Inf. Model. 64 3080

    [30]

    Li T, Wang N, Li C, Liu M 2025 Phys. Rev. C 112 024306

    [31]

    Wei K W, Shang T S, Tian R H, Yang D, Li C J, Chen J, Li J, Huang X L, Zhu J L 2025 Acta Phys. Sin. 74 182901 (in Chinese) [魏凯文, 尚天帅, 田榕赫, 杨东, 李春娟, 陈军, 李剑, 黄小龙, 朱佳丽 2025 74 182901]

    [32]

    Ma Y G, Pang L G, Wang R, Zhou K 2023 Chin. Phys. Lett. 40 122101

    [33]

    He W B, Ma Y G, Pang L G, Song H C, Zhou K 2023 Nucl. Sci. Tech. 34 88

    [34]

    He W B, Li Q F, Ma Y G, Niu Z M, Pei J C, Zhang Y X 2023 Sci. China Phys. Mech. 66 282001

    [35]

    Li Z L, Gao Z P, Liu L, Wang Y J, Zhu L, Li Q F 2024 Phys. Rev. C 109 024604

    [36]

    Gao Z P, Liu S Y, Wen P W, Liao Z H, Yang Y, Su J, Wang Y J, Zhu L 2024 Phys. Rev. C 109 024601

    [37]

    Qiao C Y, Pei J C, Wang Z A, Qiang Y, Chen Y J, Shu N C, Ge Z G 2021 Phys. Rev. C 103 034621

    [38]

    Feng Z Y, Tian J L, Wu T, Wei G J, Li Z L, Shi X Q, Wang Y J, Li Q F 2024 Nucl. Sci. Tech. 35 93

    [39]

    Tian J L, Feng J X, Shen J C, Yao L, Wang J Y, Wu T, Zhao Y L 2025 Nucl. Sci. Tech. 36 1

    [40]

    Ma C W, Wei X B, Chen X X, Peng D, Wang Y T, Pu J, Cheng K X, Guo Y F, Wei H L 2022 Chin. Phys. C 46 074104

    [41]

    Ma C W, Peng D, Wei H L, Niu Z M, Wang Y T, Wada R 2020 Chin. Phys. C 44 014104

    [42]

    Bao M, Jiang H, Zhao Y M 2023 Nucl. Phys. Rev. 40 141 (in Chinese) [鲍曼, 姜慧, 赵玉民 2023 原子核物理评论 40 141]

    [43]

    Möller P, Myers W D, Sagawa H, Yoshida S 2012 Phys. Rev. Lett. 108 052501

    [44]

    Duflo J, Zuker A P 1995 Phys. Rev. C 52 R23

    [45]

    Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215

    [46]

    Geng L S, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785

    [47]

    Xia X W, Lim Y, Zhao P W, Liang H Z, Qu X Y, Chen Y, Liu H, Zhang L F, Zhang S Q, Kim Y, Meng J 2018 At. Data Nucl. Data Tables 121 1

    [48]

    Goriely S, Chamel N, Pearson J M 2009 Phys. Rev. Lett. 102 152503

    [49]

    Goriely S, Hilaire S, Girod M, Péru S 2009 Phys. Rev. Lett. 102 242501

    [50]

    Zhang K Y, He X T, Meng J, Pan C, Shen C W, Wang C, Zhang S Q 2021 Phys. Rev. C 104 L021301

    [51]

    Kondev F, Wang M, Huang W, Naimi S, Audi G 2021 Chin. Phys. C 45 030001

    [52]

    Niu Z M, Liang H Z 2022 Phys. Rev. C 106 L021303

    [53]

    Niu Z M, Liang H Z 2018 Phys. Lett. B 778 48

    [54]

    Wu X H, Lu Y Y, Zhao P W 2022 Phys. Lett. B 834 137394

    [55]

    Gao Z P, Wang Y J, Lü H L, Li Q F, Shen C W, Liu L 2021 Nucl. Sci. Tech. 32 109

    [56]

    Kondev F G, Naimi S 2017 Chin. Phys. C 41 030003

    [57]

    Yuan Q N, Qi P P, Xiao X P, Wang X, He J, Long G M, Duan Z W, Dai Y Y, Yan R C, Yu G M, Yang H T, Qiang H 2025 arXiv preprint arXiv:2508.03155

    [58]

    Wang M, Zhang Y H, Zhou X, Zhou X H, Xu H S, Liu M L, Li J G, Niu Y F, Huang W J, Yuan Q, Zhang S, Xu F R, Litvinov Y A, Blaum K, Meisel Z, Casten R F, Cakirli R B, Chen R J, Deng H Y, Fu C Y, Ge W W, Li H F, Liao T, Litvinov S A, Shuai P, Shi J Y, Song Y N, Sun M Z, Wang Q, Xing Y M, Xu X, Yan X L, Yang J C, Yuan Y J, Zeng Q, Zhang M 2023 Phys. Rev. Lett. 130 192501

    [59]

    Hinne M, Gronau Q F, Van Den Bergh D, Wagenmakers E J 2020 Adv. Methods Pract. Psychol. Sci. 3 200

    [60]

    Hoeting J A, Madigan D, Raftery A E, Volinsky C T 1999 Stat. Sci. 14 382

    [61]

    Guan D W, Pei J C 2024 Phys. Lett. B 851 138578

    [62]

    Zhang X Y, Li W F, Fang J Y, Niu Z M 2024 Nucl. Phys. A 1043 122820

    [63]

    Ge Z, Reponen M, Eronen T, Hu B, Kortelainen M, Kankainen A, Moore I, Nesterenko D, Yuan C X, Beliuskina O, Cañete L, Groote R, Delafosse C, Dickel T, Roubin A, Geldhof S, Gins W, Holt J D, Hukkanen M, Jaries A, Jokinen A, Koszorús ff, Kripkó-Koncz G, Kujanpää S, Lam Y H, Nikas S, Ortiz-Cortes A, Penttilä H, PitmanWeymouth D, Plaß W, Pohjalainen I, Raggio A, Rinta-Antila S, Romero J, Stryjczyk M, Vilen M, Virtanen V, Zadvornaya A 2024 Phys. Rev. Lett. 133 132503

    [64]

    Agrawal S, Chandnani N, Ghosh T, Saxena G, Agrawal B K, Paar N 2025 arXiv preprint arXiv:2508.21771

    [65]

    Yang H, Chen C Y, Xu X Y, Wang H K, Wang Y B 2025 Nucl. Sci. Tech. 36 129

    [66]

    Collaboration S N 2024 Phys. Rev. Lett. 133 082501

    [67]

    Yu Y, Xing Y M, Zhang Y H, Wang M, Zhou X H, Li J G, Li H H, Yuan Q, Niu Y F, Huang Y N, Geng J, Guo J Y, Chen J W, Pei J C, Xu F R, Litvinov Y A, Blaum K, Angelis G, Tanihata I, Yamaguchi T, Zhou X, Xu H S, Chen Z Y, Chen R J, Deng H Y, Fu C Y, Ge W W, Huang W J, Jiao H Y, Luo Y F, Li H F, Liao T, Shi J Y, Si M, Sun M Z, Shuai P, Tu X L, Wang Q, Xu X, Yan X L, Yuan Y J, Zhang M 2024 Phys. Rev. Lett. 133 222501

    [68]

    Dronchi N, Charity R J, Sobotka L G, Brown B A, Weisshaar D, Gade A, Brown K W, Reviol W, Bazin D, Farris P J, Hill A M, Li J, Longfellow B, Rhodes D, Paneru S N, Gillespie S A, Anthony A K, Rubino E, Biswas S 2024 Phys. Rev. C 110 L031302

    [69]

    Lalanne L, Sorlin O, Poves A, Assié M, Hammache F, Koyama S, Suzuki D, Flavigny F, Girard-Alcindor V, Lemasson A, Matta A, Roger T, Beaumel D, Blumenfeld Y, Brown B, De Oliveira Santos F, Delaunay F, de Séréville N, Franchoo S, Gibelin J, Guillot J, Kamalou O, Kitamura N, Lapoux V, Mauss B, Morfouace P, Pancin J, Saito T Y, Stodel C, Thomas J C 2023 Phys. Rev. Lett. 131 092501

    [70]

    Silwal R, Andreoiu C, Ashrafkhani B, Bergmann J, Brunner T, Cardona J, Dietrich K, Dunling E, Gwinner G, Hockenbery Z, Holt J D, Izzo C, Jacobs A, Javaji A, Kootte B, Lan Y, Lunney D, Lykiardopoulou E M, Miyagi T, Mougeot M, Mukul I, Murböck T, Porter W S, Reiter M, Ringuette J, Dilling J, Kwiatkowski A A 2022 Phys. Lett. B 833 137288

    [71]

    Wang K L, Estrade A, Famiano M, Schatz H, Barber M, Baumann T, Bazin D, Bhatt K, Chapman T, Dopfer J, Famiano B, George S, Giles M, Ginter T, Jenkins J, Jin S, Klankowski L, Liddick S, Meisel Z, Nepal N, Pereira J, Rijal N, Rogers A M, Tarasov O, Zimba G 2024 Phys. Rev. C 109 035806

    [72]

    Hamaker A, Leistenschneider E, Jain R, Bollen G, Giuliani S A, Lund K, Nazarewicz W, Neufcourt L, Nicoloff C R, Puentes D, Ringle R, Sumithrarachchi C S, Yandow I T 2021 Nat. Phys. 17 1408

    [73]

    Mougeot M, Atanasov D, Karthein J, Wolf R N, Ascher P, Blaum K, Chrysalidis K, Hagen G, Holt J D, Huang W J, Ascher P, Blaum K, Jansen G R, Kulikov I, Litvinov Y A, Lunney D, Manea V, Miyagi T, Papenbrock T, Schweikhard L, Schwenk A, Steinsberger T, Stroberg S R, Wilkins S G, Zuber K 2021 Nat. Phys. 17 1099

    [74]

    Ray D, Vassh N, Liu B, Valverde A A, Brodeur M, Clark J A, McLaughlin G C, Mumpower M R, Orford R, Porter W S, Savard G, Sharma K S, Surman R, Buchinger F, Burdette D P, Callahan N, Gallant A T, Hoff D E M, Kolos K, Kondev F G, Morgan G E, Rivero F, Santiago-Gonzalez D, Scielzo N D, Varriano L, Weber C M, Wilson G E, Yan X L 2024 arXiv preprint arXiv:2411.06310

    [75]

    Spătaru A, Kripkó-Koncz G, Dickel T, Hornung C, Plaß W R, Constantin P, Amanbayev D, Ayet San Andrés S, Balabanski D L, Beck S, Bergmann J, Geissel H, Kalantar-Nayestanaki N, Kehat J, Mardor I, Minkov N, Mollaebrahimi A, Scheidenberger C, Wasserheß M, Wilsenach H, Zhao J W 2025 Phys. Rev. C 111 054307

    [76]

    Schatz H, Bildsten L, Cumming A, Ouellette M 2003 Nucl. Phys. A 718 247

    [77]

    Wang Y P, Wang Y K, Xu F F, Zhao P W, Meng J 2024 Phys. Rev. Lett. 132 232501

    [78]

    https://github.com/lzl888-afk/Further-exploration-of-the-machine-learning-based-nuclear-mass-table

    [79]

    Xing F Z, Yue X K, Wang N, Wang Y Z 2025 Acta Phys. Sin. 74 112301 (in Chinese) [邢凤竹, 乐先凯, 王楠, 王艳召 2025 74 112301]

    [80]

    Chen H J, Sheng H W, Huang W H, Wu B Q, Zhao T L, Bao X J 2025 Acta Phys. Sin. 74 192301 (in Chinese)[陈海军, 盛浩文, 黄文豪, 吴彬琪, 赵天亮, 包小军 2025 74 192301]

    [81]

    Jiang Y M, Zhang D D, Zhou S G 2025 Phys. 54 599

    [82]

    Fang Y P, Gao Z P, Zhang Y N, Liao Z H, Yang Y, Su J, Zhu L 2024 Phys. Lett. B 858 139069

  • [1] LI Yuting, YANG Jiong, XI Jinyang. Machine learning empowered electronic structure calculations: Progress, challenges, and prospects. Acta Physica Sinica, doi: 10.7498/aps.75.20251253
    [2] ZHANG Xuzhe, LI Jiaxing, CHEN Wanling, ZHANG Hongfei. Application of Machine Learning in Fission Barrier Height and Ground State Binding Energies. Acta Physica Sinica, doi: 10.7498/aps.75.20251278
    [3] WANG Dongdong, Li Peng, WANG Zhiheng. Nuclear Mass Predictions through Neural Networks Incorporating Neutron and Proton Separation Energy Constraints. Acta Physica Sinica, doi: 10.7498/aps.75.20251315
    [4] WU Qing, NIU Zhongming, LIANG Haozhao. Impact of uncertainty of nuclear mass predictions on β-decay half-lives and neutron-capture rates. Acta Physica Sinica, doi: 10.7498/aps.75.20251195
    [5] WANG Yue, YE Hanhan, XIONG Wei, WANG Xianhua, SHI Hailiang, LI Chao, CHENG Chen, WU Shichao. A spectral feature enhancement-driven machine learning method for cloud detection using ground-based infrared hyperspectral data. Acta Physica Sinica, doi: 10.7498/aps.74.20250982
    [6] GUO Yan, LYU Heng, DING Chunling, YUAN Chenzhi, JIN Ruibo. Machine learning identification of fractional-order vortex beam diffraction process. Acta Physica Sinica, doi: 10.7498/aps.74.20241458
    [7] ZHANG Tong, WANG Jiahao, TIAN Shuai, SUN Xuran, LI Ri. Machine learning-based study of dynamic shrinkage behavior during solidification of castings. Acta Physica Sinica, doi: 10.7498/aps.74.20241581
    [8] WANG Peng, MAIMAITINIYAZI Maimaitiabudula. Quantum dynamics of machine learning. Acta Physica Sinica, doi: 10.7498/aps.74.20240999
    [9] CHEN Haijun, SHENG Haowen, HUANG Wenhao, WU Binqi, ZHAO Tianliang, BAO Xiaojun. Research on stability and decay properties of superheavy nuclei based on neural network method. Acta Physica Sinica, doi: 10.7498/aps.74.20250720
    [10] Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng. Machine learning based laser homogenization method. Acta Physica Sinica, doi: 10.7498/aps.73.20240747
    [11] Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica, doi: 10.7498/aps.73.20231618
    [12] Deng Xiang-Wen, Wu Li-Yuan, Zhao Rui, Wang Jia-Ou, Zhao Li-Na. Application and prospect of machine learning in photoelectron spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.73.20240957
    [13] Guo Wei-Chen, Ai Bao-Quan, He Liang. Reveal flocking phase transition of self-propelled active particles by machine learning regression uncertainty. Acta Physica Sinica, doi: 10.7498/aps.72.20230896
    [14] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, doi: 10.7498/aps.72.20230334
    [15] Guan Xing-Yue, Huang Heng-Yan, Peng Hua-Qi, Liu Yan-Hang, Li Wen-Fei, Wang Wei. Machine learning in molecular simulations of biomolecules. Acta Physica Sinica, doi: 10.7498/aps.72.20231624
    [16] Ying Da-Wei, Zhang Si-Hui, Deng Shu-Jin, Wu Hai-Bin. Single shot imaging for cold atoms based on machine learning. Acta Physica Sinica, doi: 10.7498/aps.72.20230449
    [17] Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu. Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica, doi: 10.7498/aps.71.20211632
    [18] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, doi: 10.7498/aps.70.20210831
    [19] Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie. Machine learning based on wave and diffusion physical systems. Acta Physica Sinica, doi: 10.7498/aps.70.20210879
    [20] Zhang Jia-Ming, Xu Xiao-Dong, Sun Bao-Hua. A model for rp-process within the (p,)-(,p) equilibrium approximation and its application. Acta Physica Sinica, doi: 10.7498/aps.62.132501
Metrics
  • Abstract views:  30
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  25 December 2025
  • /

    返回文章
    返回
    Baidu
    map