Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Parameter optimization of Rydberg atomic receiver based on channel capacity criterion

CHEN Guanyu WANG Cheng YANG Bin ZHOU Pengpeng CHEN Tiantian WU Yuchen

Citation:

Parameter optimization of Rydberg atomic receiver based on channel capacity criterion

CHEN Guanyu, WANG Cheng, YANG Bin, ZHOU Pengpeng, CHEN Tiantian, WU Yuchen
cstr: 32037.14.aps.74.20250944
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Rydberg atoms possess a large electric dipole moment and exhibit high sensitivity to electromagnetic signals. Receivers based on Rydberg atoms represent a novel reception mechanism, demonstrating broad application prospects in the field of communication. Current research has not addressed the influence of the operating parameters of Rydberg atomic receiver on channel capacity. This study establishes a channel capacity model for Rydberg atomic receiver based on Shannon's formula and the response mechanism of the electromagnetically induced transparency (EIT) effect. Using this model, the influences of atomic number density, laser beam waist, and coupling laser Rabi frequency on the channel capacity of Rydberg atomic receiver are analyzed. A strategy for optimizing channel capacity by adjusting the coupling laser Rabi frequency is proposed, and an analytical solution for the Rabi frequency that maximizes channel capacity is derived. The accuracy of this analytical solution is then verified through numerical simulations. The channel capacity corresponding to the analytical solution in this study is similar to the optimal channel capacity obtained using the one-dimensional optimization method (Newton’s method) and is superior to the results obtained by the quadratic interpolation method, demonstrating the effectiveness of the proposed analytical solution in optimizing the channel capacity of Rydberg atomic receiver. This research provides theoretical guidance for designing high-performance Rydberg atomic receiver and optimizing channel capacity.
      Corresponding author: WANG Cheng, wangc1132024@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62171469, 62071029).
    [1]

    Adams C S, Pritchard J D, Shaffer J P 2019 J. Phys. B: At. Mol. Opt. Phys. 53 012002Google Scholar

    [2]

    Fancher C T, Scherer D R, John M C S, Schmittberger M B L 2021 IEEE Trans. Quantum Eng. 2 3501313Google Scholar

    [3]

    Schlossberger N, Prajapati N, Berweger S, Rotunno A P, Artusio-Glimpse A B, Simons M T, Sheikh A A, Norrgard E B, Eckel S P, Holloway C L 2024 Nat. Rev. Phys. 6 606Google Scholar

    [4]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [5]

    Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 5931Google Scholar

    [6]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014053Google Scholar

    [7]

    Fan H Q, Kumar S, Kübler H, Shaffer J P 2016 J. Phys. B: At. Mol. Opt. Phys. 49 104004Google Scholar

    [8]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar

    [9]

    Ding D S, Liu Z K, Shi B S, Guo G C, Mølmer K, Adams C S 2022 Nat. Phys 18 1447Google Scholar

    [10]

    Tu H T, Liao K Y, Zhang Z X, Liu X H, Zheng S Y, Yang S Z, Zhang X D, Yan H, Zhu S L 2022 Nat. Photonics 16 291Google Scholar

    [11]

    Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108Google Scholar

    [12]

    Yuan J P, Jin T, Xiao L T, Jia S T, Wang L R 2023 IEEE Antennas Wirel. Propag. Lett. 22 2580Google Scholar

    [13]

    Yuan J P, Jin T, Yan Y, Xiao L T, Jia S T, Wang L R 2024 EPJ Quantum Technol. 11 2Google Scholar

    [14]

    Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455Google Scholar

    [15]

    Cui M Y, Zeng Q, Huang K 2024 IEEE J. Sel. Area. Commun. 43 659Google Scholar

    [16]

    Wade C G, Šibalić N, De Melo N R, Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photonics 11 40Google Scholar

    [17]

    Downes L A, Mackellar A R, Whiting D J, Bourgenot C, Adams C S, Weatherill K J 2020 Phys. Rev. X 10 011027Google Scholar

    [18]

    Li X Z, Li T, Wan J, Zhang B, Huang Q, Yang X Y, Feng L, Zhang K Q, Huang W, Deng H X 2025 J. Phys. D: Appl. Phys. 58 085109Google Scholar

    [19]

    Wu K D, Xie C W, Li C F, Guo G C, Zou C L, Xiang G Y 2024 Sci. Adv. 10 8130Google Scholar

    [20]

    Bohaichuk S M, Ripka F, Venu V, Christaller F, Liu C, Schmidt M, Kübler H, Shaffer J P 2023 Phys. Rev. Appl. 20 061004Google Scholar

    [21]

    Sandidge G, Santamaria-Botello G, Bottomley E, Fan H Q, Popović Z 2024 IEEE Trans. Microwave Theory Tech. 72 2057Google Scholar

    [22]

    Wu F C, An Q, Sun Z S, Fu Y Q 2023 Phys. Rev. A 107 043108Google Scholar

    [23]

    Wu Y H, Xiao D P, Zhang H Q, Yan S 2025 Chin. Phys. B 34 013201Google Scholar

    [24]

    Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 45030Google Scholar

    [25]

    Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 J. Appl. Phys. 129 154503Google Scholar

    [26]

    Knarr S H, Bucklew V G, Langston J, Cox K C, Hill J C, Meyer D H, Drakes J A 2023 IEEE Trans. Quantum Eng. 4 3500108Google Scholar

    [27]

    Zhang L H, Liu B, Liu Z K, Zhang Z Y, Shao S Y, Wang Q F, Ma Y, Han T Y, Guo G C, Ding D S, Shi B S 2024 Chip 3 100089Google Scholar

    [28]

    Mao R Q, Lin Y, Fu Y Q, Ma Y M, Yang K 2024 IEEE Trans. Antennas Propag. 72 2025Google Scholar

    [29]

    Meyer D H, Hill J C, Kunz P D 2023 Phys. Rev. Appl. 19 014025Google Scholar

    [30]

    Meyer D H, O’Brien C, Fahey D P, Cox K C, Kunz P D 2021 Phys. Rev. A 104 043103Google Scholar

    [31]

    Zhang P, Jing M Y, Wang Z, Peng Y, Yuan S X, Zhang H, Xiao L T, Jia S T, Zhang L J 2023 EPJ Quantum Technol. 10 39Google Scholar

    [32]

    Wu H, Wu S C, Gong C, Li S B, Zhu J K 2024 14th International Symposium on Communication Systems, Networks and Digital Signal Processing Rome, Italy, July 17–19, 2024 p74

    [33]

    Kumar S, Fan H Q, Kübler H, Sheng J T, Shaffer J P 2017 Sci. Rep. 7 42981Google Scholar

    [34]

    Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar

    [35]

    Bussey L W, Winterburn A, Menchetti M, Burton F, Whitley T 2021 J. Lightwave Technol. 39 7813Google Scholar

    [36]

    Li F 2025 Opt. Lett. 50 1369Google Scholar

    [37]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106Google Scholar

    [38]

    Shannon C E 1949 Proc. IRE 37 10Google Scholar

    [39]

    Cox K C, Meyer D H, Fatemi F K, Kunz P D 2018 Phys. Rev. Lett. 121 110502Google Scholar

    [40]

    Shylla D, Prajapati N, Rotunno A P, Schlossberger N, Manchaiah D, Watterson W J, Artusio-Glimpse A, Berweger S, Simons M T, Holloway C L 2025 Phys. Rev. A 111 033115Google Scholar

    [41]

    Hu J L, Jiao Y C, He Y H, Zhang H, Zhang L J, Zhao J M, Jia S T 2023 EPJ Quantum Technol. 10 51Google Scholar

    [42]

    Akgül A, Grow D 2023 Mathematics 11 2277Google Scholar

    [43]

    Zhao W G, Wang L Y, Zhang Z X, Mirjalili S, Khodadadi N, Ge Q 2023 Comput. Methods Appl. Mech. Eng. 417 116446Google Scholar

  • 图 1  里德伯原子接收机 (a) 实验装置; (b) Rb原子四能级跃迁示意图

    Figure 1.  Rydberg atomic receiver: (a) Experimental setup; (b) schematic of the four-level transition diagram in Rb atoms.

    图 2  (a) 信道容量与原子数密度之间的关系曲线; (b) 信道容量与激光束腰之间的关系曲线

    Figure 2.  (a) Channel capacity versus atomic density; (b) channel capacity versus laser beam waist.

    图 3  (a) 带宽$ B $与$ {\varOmega _{\text{c}}} $的关系曲线; (b) 信噪比$ {\mathrm{SNR}} $与$ {\varOmega _{\text{c}}} $的关系曲线

    Figure 3.  (a) Bandwidth $ B $ versus $ {\varOmega _{\text{c}}} $; (b) $ {\mathrm{SNR}} $ versus $ {\varOmega _{\text{c}}} $.

    图 4  $ {{\partial {C_{{\text{Ry}}}}} \mathord{\left/ {\vphantom {{\partial {C_{{\text{Ry}}}}} {\partial {\varOmega _{\text{c}}}}}} \right. } {\partial {\varOmega _{\text{c}}}}} $与$ {\varOmega _{\text{c}}} $的关系曲线

    Figure 4.  $ {{\partial {C_{{\text{Ry}}}}} \mathord{\left/ {\vphantom {{\partial {C_{{\text{Ry}}}}} {\partial {\varOmega _{\text{c}}}}}} \right. } {\partial {\varOmega _{\text{c}}}}} $ versus $ {\varOmega _{\text{c}}} $.

    图 5  $ {\varOmega _{{\text{c-opt}}}} $与$ {\varOmega _{{\text{RF}}}} $的关系曲线

    Figure 5.  $ {\varOmega _{{\text{c-opt}}}} $ versus $ {\varOmega _{{\text{RF}}}} $.

    图 6  方法对比图

    Figure 6.  Methods comparison.

    表 1  符号说明

    Table 1.  Symbols and definitions.

    符号 含义 参数的变化对信道容量的影响程度
    $ {\varOmega _{\text{c}}} $ 耦合光拉比
    频率
    $ {\varOmega _{\text{c}}} $从$ 2\pi \times 10{\text{ MHz}} $提升至$ 2\pi \times 15{\text{ MHz}} $,
    信道容量提升约8—14 Mbit/s
    $ {\varOmega _{\text{p}}} $ 探测光拉比
    频率
    $ {\varOmega _{\text{p}}} $从$ 2\pi \times 1{\text{ MHz}} $提升至$ 2\pi \times 3{\text{ MHz}} $, 信道
    容量提升约1 Mbit/s ($ {\varOmega _{\text{p}}} $通常取值较小)
    $ {\varOmega _{{\text{RF}}}} $ 信号场拉比
    频率
    $ {\varOmega _{{\text{RF}}}} $从$ 2\pi \times 5{\text{ MHz}} $提升至$ 2\pi \times 15{\text{ MHz}} $,
    信道容量提升约5 Mbit/s
    $ n $ 原子数密度 $ n $从$ 25 \times {10^{16}}{\text{ }}{{\text{m}}^{ - 3}} $提升至$ 100 \times {10^{16}}{\text{ }}{{\text{m}}^{ - 3}} $,
    信道容量提升约8 Mbit/s
    $ r $ 激光束腰 $ r $从$ 25{\text{ μm}} $提升至$ 125{\text{ μm}} $, 信道
    容量提升约8—12 Mbit/s
    $ L $ 原子气室长度 信道容量随$ L $的增大略有提升
    $ {{{\varGamma }}_i} $ 能级$ | i \rangle $自发
    辐射衰变速率
    由实验设置确定
    $ {\omega _{\text{p}}} $ 探测光频率 由实验设置确定
    $ {q_{\text{d}}} $ 探测效率 固定值
    $ {\varepsilon _0} $ 真空介电常数 固定值
    $ \hbar $ 约化普朗克
    常数
    固定值
    $ \delta $ 里德伯态失谐 固定值
    DownLoad: CSV
    Baidu
  • [1]

    Adams C S, Pritchard J D, Shaffer J P 2019 J. Phys. B: At. Mol. Opt. Phys. 53 012002Google Scholar

    [2]

    Fancher C T, Scherer D R, John M C S, Schmittberger M B L 2021 IEEE Trans. Quantum Eng. 2 3501313Google Scholar

    [3]

    Schlossberger N, Prajapati N, Berweger S, Rotunno A P, Artusio-Glimpse A B, Simons M T, Sheikh A A, Norrgard E B, Eckel S P, Holloway C L 2024 Nat. Rev. Phys. 6 606Google Scholar

    [4]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [5]

    Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 5931Google Scholar

    [6]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014053Google Scholar

    [7]

    Fan H Q, Kumar S, Kübler H, Shaffer J P 2016 J. Phys. B: At. Mol. Opt. Phys. 49 104004Google Scholar

    [8]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar

    [9]

    Ding D S, Liu Z K, Shi B S, Guo G C, Mølmer K, Adams C S 2022 Nat. Phys 18 1447Google Scholar

    [10]

    Tu H T, Liao K Y, Zhang Z X, Liu X H, Zheng S Y, Yang S Z, Zhang X D, Yan H, Zhu S L 2022 Nat. Photonics 16 291Google Scholar

    [11]

    Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108Google Scholar

    [12]

    Yuan J P, Jin T, Xiao L T, Jia S T, Wang L R 2023 IEEE Antennas Wirel. Propag. Lett. 22 2580Google Scholar

    [13]

    Yuan J P, Jin T, Yan Y, Xiao L T, Jia S T, Wang L R 2024 EPJ Quantum Technol. 11 2Google Scholar

    [14]

    Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455Google Scholar

    [15]

    Cui M Y, Zeng Q, Huang K 2024 IEEE J. Sel. Area. Commun. 43 659Google Scholar

    [16]

    Wade C G, Šibalić N, De Melo N R, Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photonics 11 40Google Scholar

    [17]

    Downes L A, Mackellar A R, Whiting D J, Bourgenot C, Adams C S, Weatherill K J 2020 Phys. Rev. X 10 011027Google Scholar

    [18]

    Li X Z, Li T, Wan J, Zhang B, Huang Q, Yang X Y, Feng L, Zhang K Q, Huang W, Deng H X 2025 J. Phys. D: Appl. Phys. 58 085109Google Scholar

    [19]

    Wu K D, Xie C W, Li C F, Guo G C, Zou C L, Xiang G Y 2024 Sci. Adv. 10 8130Google Scholar

    [20]

    Bohaichuk S M, Ripka F, Venu V, Christaller F, Liu C, Schmidt M, Kübler H, Shaffer J P 2023 Phys. Rev. Appl. 20 061004Google Scholar

    [21]

    Sandidge G, Santamaria-Botello G, Bottomley E, Fan H Q, Popović Z 2024 IEEE Trans. Microwave Theory Tech. 72 2057Google Scholar

    [22]

    Wu F C, An Q, Sun Z S, Fu Y Q 2023 Phys. Rev. A 107 043108Google Scholar

    [23]

    Wu Y H, Xiao D P, Zhang H Q, Yan S 2025 Chin. Phys. B 34 013201Google Scholar

    [24]

    Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 45030Google Scholar

    [25]

    Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 J. Appl. Phys. 129 154503Google Scholar

    [26]

    Knarr S H, Bucklew V G, Langston J, Cox K C, Hill J C, Meyer D H, Drakes J A 2023 IEEE Trans. Quantum Eng. 4 3500108Google Scholar

    [27]

    Zhang L H, Liu B, Liu Z K, Zhang Z Y, Shao S Y, Wang Q F, Ma Y, Han T Y, Guo G C, Ding D S, Shi B S 2024 Chip 3 100089Google Scholar

    [28]

    Mao R Q, Lin Y, Fu Y Q, Ma Y M, Yang K 2024 IEEE Trans. Antennas Propag. 72 2025Google Scholar

    [29]

    Meyer D H, Hill J C, Kunz P D 2023 Phys. Rev. Appl. 19 014025Google Scholar

    [30]

    Meyer D H, O’Brien C, Fahey D P, Cox K C, Kunz P D 2021 Phys. Rev. A 104 043103Google Scholar

    [31]

    Zhang P, Jing M Y, Wang Z, Peng Y, Yuan S X, Zhang H, Xiao L T, Jia S T, Zhang L J 2023 EPJ Quantum Technol. 10 39Google Scholar

    [32]

    Wu H, Wu S C, Gong C, Li S B, Zhu J K 2024 14th International Symposium on Communication Systems, Networks and Digital Signal Processing Rome, Italy, July 17–19, 2024 p74

    [33]

    Kumar S, Fan H Q, Kübler H, Sheng J T, Shaffer J P 2017 Sci. Rep. 7 42981Google Scholar

    [34]

    Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar

    [35]

    Bussey L W, Winterburn A, Menchetti M, Burton F, Whitley T 2021 J. Lightwave Technol. 39 7813Google Scholar

    [36]

    Li F 2025 Opt. Lett. 50 1369Google Scholar

    [37]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106Google Scholar

    [38]

    Shannon C E 1949 Proc. IRE 37 10Google Scholar

    [39]

    Cox K C, Meyer D H, Fatemi F K, Kunz P D 2018 Phys. Rev. Lett. 121 110502Google Scholar

    [40]

    Shylla D, Prajapati N, Rotunno A P, Schlossberger N, Manchaiah D, Watterson W J, Artusio-Glimpse A, Berweger S, Simons M T, Holloway C L 2025 Phys. Rev. A 111 033115Google Scholar

    [41]

    Hu J L, Jiao Y C, He Y H, Zhang H, Zhang L J, Zhao J M, Jia S T 2023 EPJ Quantum Technol. 10 51Google Scholar

    [42]

    Akgül A, Grow D 2023 Mathematics 11 2277Google Scholar

    [43]

    Zhao W G, Wang L Y, Zhang Z X, Mirjalili S, Khodadadi N, Ge Q 2023 Comput. Methods Appl. Mech. Eng. 417 116446Google Scholar

  • [1] LI Shiwen, ZHOU Bao, ZHAO Qirong, YANG Xiaobo, XIE Zaixin, DUAN Zhuoqi, ZHAO Enming, HU Yongmao. Numerical simulation and comparative theoretical analysis of performance optimization for perovskite solar cells based on SCAPS-1D. Acta Physica Sinica, 2025, 74(12): 127701. doi: 10.7498/aps.74.20250335
    [2] WANG Yurong, QU Weiwei, LI Guilin, DENG Hu, SHANG Liping. An optimization method for terahertz metamaterial absorber based on multi-objective particle swarm optimization. Acta Physica Sinica, 2025, 74(5): 057801. doi: 10.7498/aps.74.20241684
    [3] XU Jiaxin, XU Lechen, LIU Jingyang, DING Huajian, WANG Qin. Research progress of artificial intelligence empowered quantum communication and quantum sensing systems. Acta Physica Sinica, 2025, 74(12): 120301. doi: 10.7498/aps.74.20250322
    [4] LIU Gangqin. Magnetic resonance and quantum sensing with color centers under high pressures. Acta Physica Sinica, 2025, 74(11): 117601. doi: 10.7498/aps.74.20250224
    [5] LI Qing, JI Yunlan, LIU Ran, Suter Dieter, JIANG Min, PENG Xinhua. Quantum sensing based on strongly interacting nuclear spin systems. Acta Physica Sinica, 2025, 74(11): 117401. doi: 10.7498/aps.74.20250271
    [6] ZHANG Rongxiang, DAI Huade, LIU Tao, WANG Weiyu, ZHOU Yuncheng, BI Huicong. Channel capacity of focused hypergeometric-Gaussian type-II beams in ocean turbulence. Acta Physica Sinica, 2025, 74(11): 114207. doi: 10.7498/aps.74.20250306
    [7] ZHENG Tian, CHEN Yujie, CHENG Jin, CHEN Lanjian, LIU Ao, DONG Chen. Parameter optimization method for space channel continuous-variable quantum key distribution based on Unet network. Acta Physica Sinica, 2025, 74(18): 180302. doi: 10.7498/aps.74.20250740
    [8] Wu Bo, Lin Yi, Wu Feng-Chuan, Chen Xiao-Zhang, An Qiang, Liu Yi, Fu Yun-Qi. Quantum microwave electric field measurement technology based on enhancement electric filed resonator. Acta Physica Sinica, 2023, 72(3): 034204. doi: 10.7498/aps.72.20221582
    [9] Zhou Jiang-Ping, Zhou Yuan-Yuan, Zhou Xue-Jun. Improved parameter optimization method for measurement device independent protocol. Acta Physica Sinica, 2023, 72(12): 120303. doi: 10.7498/aps.72.20230179
    [10] Liu Tian-Le, Xu Xiao, Fu Bo-Wei, Xu Jia-Xin, Liu Jing-Yang, Zhou Xing-Yu, Wang Qin. Regression-decision-tree based parameter optimization of measurement-device-independent quantum key distribution. Acta Physica Sinica, 2023, 72(11): 110304. doi: 10.7498/aps.72.20230160
    [11] Yang Zhi-Ping, Kong Xi, Shi Fa-Zhan, Du Jiang-Feng. Phase transition observation of nanoscale water on diamond surface. Acta Physica Sinica, 2022, 71(6): 067601. doi: 10.7498/aps.71.20211348
    [12] Lin Hao-Bin, Zhang Shao-Chun, Dong Yang, Zheng Yu, Chen Xiang-Dong, Sun Fang-Wen. Temperature sensing with nitrogen vacancy center in diamond. Acta Physica Sinica, 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [13] Liu Gang-Qin. Diamond spin quantum sensing under extreme conditions. Acta Physica Sinica, 2022, 71(6): 066101. doi: 10.7498/aps.71.20212072
    [14] Liu Gang-Qin, Xing Jian, Pan Xin-Yu. Quantum control of nitrogen-vacancy center in diamond. Acta Physica Sinica, 2018, 67(12): 120302. doi: 10.7498/aps.67.20180755
    [15] Wang Yu-Wen, Dong Zhi-Wei, Li Han-Yu, Zhou Xun, Luo Zhen-Fei. Atmospheric window characteristic and channel capacity of THz wave propagation. Acta Physica Sinica, 2016, 65(13): 134101. doi: 10.7498/aps.65.134101
    [16] Jia Xiao-Jie, Ai Bin, Xu Xin-Xiang, Yang Jiang-Hai, Deng You-Jun, Shen Hui. Two-dimensional device simulation and performance optimization of crystalline silicon selective-emitter solar cell. Acta Physica Sinica, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [17] Yin Rong-Rong, Liu Bin, Liu Hao-Ran, Li Ya-Qian. Dynamic fault-tolerance analysis of scale-free topology in wireless sensor networks. Acta Physica Sinica, 2014, 63(11): 110205. doi: 10.7498/aps.63.110205
    [18] Li Hong-Qi, Guo Wei-Dong, Sun Guo-Dong, Zhang Yao-Cun. Using conditional nonlinear optimal perturbation method in parameter optimization of land surface processes model. Acta Physica Sinica, 2011, 60(1): 019201. doi: 10.7498/aps.60.019201
    [19] Xiao Hai-Lin, Ouyang Shan, Nie Zai-Ping. Capacity of multiple-input-multiple-output quantum key distribution channels. Acta Physica Sinica, 2009, 58(10): 6779-6785. doi: 10.7498/aps.58.6779
    [20] Zhang Xin-Lu, Wang Yue-Zhu, Li Li, Cui Jin-Hui, Ju You-Lun. Laser parameter optimization and experimental study of end-pumped continuous wave Tm,Ho∶YLF lasers. Acta Physica Sinica, 2008, 57(6): 3519-3524. doi: 10.7498/aps.57.3519
Metrics
  • Abstract views:  493
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  17 July 2025
  • Accepted Date:  29 August 2025
  • Available Online:  26 September 2025
  • Published Online:  20 November 2025
  • /

    返回文章
    返回
    Baidu
    map