搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于平行板谐振器的量子微波电场测量技术

武博 林沂 吴逢川 陈孝樟 安强 刘燚 付云起

引用本文:
Citation:

基于平行板谐振器的量子微波电场测量技术

武博, 林沂, 吴逢川, 陈孝樟, 安强, 刘燚, 付云起
cstr: 32037.14.aps.72.20221582

Quantum microwave electric field measurement technology based on enhancement electric filed resonator

Wu Bo, Lin Yi, Wu Feng-Chuan, Chen Xiao-Zhang, An Qiang, Liu Yi, Fu Yun-Qi
cstr: 32037.14.aps.72.20221582
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 基于Rydberg原子的量子微波测量技术具有自校准、可溯源、高灵敏度的显著优点, 针对如何提高量子微波测量灵敏度的问题, 本文从经典电磁理论出发, 提出一种终端短路的1/4波长平行板传输线谐振器电场局域增强结构. 运用场路结合的分析方法以及等效电路方法, 求解平行板传输线谐振器结构端口的反射系数为0.91; 利用场的分析方法推导出端口电场强度随时间变化的解析表达式, 进行时域分析, 绘制了平行板传输线谐振器端口的电场强度瞬态响应曲线, 得出平行板传输线谐振器建立稳态的时间为10 ns. 研究表明, 随着平行板间距的减小, 电场强度增强倍数迅速升高, 功率密度压缩能力大幅提升. 利用|69D5/2$ \rangle $实验验证了该结构在2.1 GHz可实现25 dB的电场强度增强. 本文的研究工作有望在原子测量能力基础上进一步提高测量灵敏度, 推动量子微波测量技术的实用化发展.
    Rydberg atoms based quantum microwave measurement technology has significant advantages such as self-calibration, traceability, high sensitivity and stable uniformity of measurement. In this work, from the dimension of traditional electromagnetic theory, an electric field local enhancement technique for quantum microwave measurements is developed to improve the sensitivity of quantum microwave receiver. The theoretical basis of this method comes from the different mechanisms of realization of microwave reception in quantum microwave receivers and classical receiver. Classic receivers use antennas to collect microwave energy in space to signal reception; quantum microwave receivers measure the strength of the electric field in the path of a laser beam in an atomic gas chamber (the beam is about 100 µm in diameter) to realize the signal reception. Therefore, the sensitivity of quantum microwave receiver can be improved by increasing the electric field strength in the path of laser beam. The critical physical mechanism is the multi-beam interference at the open end and the short-circuited end of the structure. The results show that with the decrease of gap height of parallel plates, the enhancement factor of electric field strength increases rapidly and the power density compression capability is greatly improved. The |69D5/2$\rangle $ experiments verify that the structure can achieve a 25 dB electric field enhancement at 2.1 GHz. This research is expected to be helpful in improving the sensitivity of measurement based on atomic measurement capabilities and in promoting the practical development of quantum microwave measurement technology.
      通信作者: 林沂, linyi_886@163.com
    • 基金项目: 国家自然科学基金(批准号: 61901495, 12104509)和国防科技大学科研计划(批准号: ZK19-20, ZK20-13)资助的课题.
      Corresponding author: Lin Yi, linyi_886@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61901495, 12104509) and the Scientific Research Project of National University of Defense Technology, China (Grant Nos. ZK19-20, ZK20-13).
    [1]

    Joshua A G, Christopher L H, Andrew S, Dave A A, Stephanie M, Nithiwadee T, Georg R 2014 Appl. Phys. Lett. 105 1683Google Scholar

    [2]

    付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279Google Scholar

    Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Journal of Radio Wave Science 37 279Google Scholar

    [3]

    Zhou Y L, Yan D, Li W 2022 Phys. Rev. A 105 053714Google Scholar

    [4]

    Christopher L H, Matt T S, Joshua A G, Andrew D, David A A, Georg R 2017 J. Appl. Phys. 121 717Google Scholar

    [5]

    Ansari R, Giraud-Héraud Y, Tran Thanh Van J 1996 Dark Matter in Cosmology Quantum Measurements Experimental Gravitation (Vol. 91) (Atlantica Séguier Frontières) p341

    [6]

    Jonathon A S, Arne S, Harald K, Robert L, Tilman P, James P S 2012 Nat. Phys. 8 819Google Scholar

    [7]

    Cox K C, Meyer D H, Fatemi F K 2018 Phys. Rev. Lett. 121 110502Google Scholar

    [8]

    Kai Y, Sun Z S, Miao R Q, Lin Y, Liu Y, An Q, Fu Y Q 2022 Chin. Opt. Lett. 20 081203Google Scholar

    [9]

    Meyer D H, Cox K C, Fatemi F K 2018 Appl. Phys. Lett. 112 211108Google Scholar

    [10]

    Otto J S, Hunter M K, Kjærgaard N 2021 J. Appl. Phys. 129 154503Google Scholar

    [11]

    Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Anten. Propag. 69 2455Google Scholar

    [12]

    吴逢川, 林沂, 武博, 付云起 2022 71 207402Google Scholar

    Wu F C, Lin Y, Wu B, Fu Y Q 2022 Acta Phys. Sin. 71 207402Google Scholar

    [13]

    Yao J W, An Q, Zhou Y L, Yang K, Wu F C, Fu Y Q 2022 Optics Lett. 47 5256Google Scholar

    [14]

    Christopher H, Mathew S, Abdulaziz H H, Joshua A G, David A A, Georg R, Steven V 2021 IEEE Anten. Propag. Magaz. 63 63Google Scholar

    [15]

    Mao R Q, Lin Y, Kai Y, An Q, Fu Y Q 2022 IEEE Anten. Wire. Propag Lett. 3212057Google Scholar

    [16]

    林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起 2022 71 170702Google Scholar

    Lin Y, Wu F C, Mao R Q, Yao J W, Liu Y, An Q, Fu Y Q 2022 Acta Phys. Sin. 71 170702Google Scholar

    [17]

    David H M, Christopher O B, Donald P F, Kevin C C, Paul D K 2021 Phys. Rev. A 104 043103Google Scholar

    [18]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nature Physics. 16 911Google Scholar

    [19]

    Cai M H, Xu Z S, You S H, Liu H P 2022 Photonics. 9 250Google Scholar

    [20]

    Quantum-Apertures DARPA https://www.darpa.mil/program/quantum-apertures [2021-05-20]

    [21]

    Anderson D A, Paradis E G, Raithel G 2018 Appl. Phys. Lett. 113 073501Google Scholar

    [22]

    Anderson D A, Raithel G A, Paradis E G 2019 US Patent 10823775 B2 [2019-06-20]

    [23]

    Holloway C L, Prajapati N, Artusio-Glimpse A, Samuel B, Matthew T S, Yoshiaki K, Andrea A, Richard W Z 2022 Appl. Phys. Lett. 120 204001Google Scholar

    [24]

    Wu B, Lin Y, Liao D, Liu Y, An Q, Fu Y Q 2022 Elec. Lett. 58 914Google Scholar

    [25]

    Ida N 2000 Engineering Electromagnetics (Berlin: Springer) p20

    [26]

    郭艳芳 2009 硕士学位论文 (北京: 中国科学院电子学研究所)

    Guo Y F 2009 M. S. Thesis (Beijing: Institute of Electrics, Chinese Academy of Sciences) (in Chinese)

  • 图 1  PPTLR电场局域增强结构仿真示意图

    Fig. 1.  PPTLR electric field local enhancement structure simulation.

    图 2  观测点电场强度随频率的变化

    Fig. 2.  Variation of electric field intensity at observation point with frequency.

    图 3  不同相对介电常数$ {\varepsilon }_{\rm{r}} $气室壁时, 观测点电场强度随频率的变化

    Fig. 3.  Variation of electric field intensity with frequency at the observation points in different walls of the dielectric constant ${\varepsilon }_{\rm{r}}$ cell.

    图 4  不同PPTLR长度$ {l}_{0} $时, 观测点电场强度随频率的变化

    Fig. 4.  Electric field intensity as a function of frequency at the observation point in different PPTLR length $ {l}_{0} $.

    图 5  电场分布

    Fig. 5.  Distribution of electric field.

    图 6  激光束路径上的电场强度

    Fig. 6.  Electric field strength in the path of the laser beam.

    图 7  观测点电场强度随平行板间距的变化

    Fig. 7.  Electric field intensity at the observation point with the height of the gap between parallel plates.

    图 8  (a)平面波照射PPTLR的示意图; (b)平面波照射PPTLR的并联谐振等效电路

    Fig. 8.  (a) Schematic diagram of plane wave irradiating PPTLR; (b) parallel resonant equivalent circuit of plane wave irradiating PPTLR.

    图 9  激光束路径上的电场强度

    Fig. 9.  Electric field strength in the path of the laser beam.

    图 10  (a)能级示意图; (b)实验装置图

    Fig. 10.  (a) Cesium atomic energy level diagram; (b) overview of the experimental setup.

    图 11  PPTLR电场局域增强结构

    Fig. 11.  PPTLR electric field local enhancement structure.

    图 12  PPTLR的瞬态响应曲线

    Fig. 12.  Transient response curve of PPTLR.

    图 13  归一化光谱图 (a) EIT谱; (b) EIT-AT分裂谱

    Fig. 13.  Normalized spectrograms: (a) EIT spectrum; (b) EIT-AT split spectrum.

    Baidu
  • [1]

    Joshua A G, Christopher L H, Andrew S, Dave A A, Stephanie M, Nithiwadee T, Georg R 2014 Appl. Phys. Lett. 105 1683Google Scholar

    [2]

    付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279Google Scholar

    Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Journal of Radio Wave Science 37 279Google Scholar

    [3]

    Zhou Y L, Yan D, Li W 2022 Phys. Rev. A 105 053714Google Scholar

    [4]

    Christopher L H, Matt T S, Joshua A G, Andrew D, David A A, Georg R 2017 J. Appl. Phys. 121 717Google Scholar

    [5]

    Ansari R, Giraud-Héraud Y, Tran Thanh Van J 1996 Dark Matter in Cosmology Quantum Measurements Experimental Gravitation (Vol. 91) (Atlantica Séguier Frontières) p341

    [6]

    Jonathon A S, Arne S, Harald K, Robert L, Tilman P, James P S 2012 Nat. Phys. 8 819Google Scholar

    [7]

    Cox K C, Meyer D H, Fatemi F K 2018 Phys. Rev. Lett. 121 110502Google Scholar

    [8]

    Kai Y, Sun Z S, Miao R Q, Lin Y, Liu Y, An Q, Fu Y Q 2022 Chin. Opt. Lett. 20 081203Google Scholar

    [9]

    Meyer D H, Cox K C, Fatemi F K 2018 Appl. Phys. Lett. 112 211108Google Scholar

    [10]

    Otto J S, Hunter M K, Kjærgaard N 2021 J. Appl. Phys. 129 154503Google Scholar

    [11]

    Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Anten. Propag. 69 2455Google Scholar

    [12]

    吴逢川, 林沂, 武博, 付云起 2022 71 207402Google Scholar

    Wu F C, Lin Y, Wu B, Fu Y Q 2022 Acta Phys. Sin. 71 207402Google Scholar

    [13]

    Yao J W, An Q, Zhou Y L, Yang K, Wu F C, Fu Y Q 2022 Optics Lett. 47 5256Google Scholar

    [14]

    Christopher H, Mathew S, Abdulaziz H H, Joshua A G, David A A, Georg R, Steven V 2021 IEEE Anten. Propag. Magaz. 63 63Google Scholar

    [15]

    Mao R Q, Lin Y, Kai Y, An Q, Fu Y Q 2022 IEEE Anten. Wire. Propag Lett. 3212057Google Scholar

    [16]

    林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起 2022 71 170702Google Scholar

    Lin Y, Wu F C, Mao R Q, Yao J W, Liu Y, An Q, Fu Y Q 2022 Acta Phys. Sin. 71 170702Google Scholar

    [17]

    David H M, Christopher O B, Donald P F, Kevin C C, Paul D K 2021 Phys. Rev. A 104 043103Google Scholar

    [18]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nature Physics. 16 911Google Scholar

    [19]

    Cai M H, Xu Z S, You S H, Liu H P 2022 Photonics. 9 250Google Scholar

    [20]

    Quantum-Apertures DARPA https://www.darpa.mil/program/quantum-apertures [2021-05-20]

    [21]

    Anderson D A, Paradis E G, Raithel G 2018 Appl. Phys. Lett. 113 073501Google Scholar

    [22]

    Anderson D A, Raithel G A, Paradis E G 2019 US Patent 10823775 B2 [2019-06-20]

    [23]

    Holloway C L, Prajapati N, Artusio-Glimpse A, Samuel B, Matthew T S, Yoshiaki K, Andrea A, Richard W Z 2022 Appl. Phys. Lett. 120 204001Google Scholar

    [24]

    Wu B, Lin Y, Liao D, Liu Y, An Q, Fu Y Q 2022 Elec. Lett. 58 914Google Scholar

    [25]

    Ida N 2000 Engineering Electromagnetics (Berlin: Springer) p20

    [26]

    郭艳芳 2009 硕士学位论文 (北京: 中国科学院电子学研究所)

    Guo Y F 2009 M. S. Thesis (Beijing: Institute of Electrics, Chinese Academy of Sciences) (in Chinese)

计量
  • 文章访问数:  8047
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-05
  • 修回日期:  2022-10-08
  • 上网日期:  2022-11-16
  • 刊出日期:  2023-02-05

/

返回文章
返回
Baidu
map