Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Channel capacity of focused hypergeometric-Gaussian type-II beams in ocean turbulence

ZHANG Rongxiang DAI Huade LIU Tao WANG Weiyu ZHOU Yuncheng BI Huicong

Citation:

Channel capacity of focused hypergeometric-Gaussian type-II beams in ocean turbulence

ZHANG Rongxiang, DAI Huade, LIU Tao, WANG Weiyu, ZHOU Yuncheng, BI Huicong
cstr: 32037.14.aps.74.20250306
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The channel capacity of the hypergeometric-Gaussian type-II (HyGG-II) beam propagating in ocean turbulence is investigated in this work. A method of utilizing a focusing mirror to enhance the channel capacity is further proposed. Comparison among focused HyGG-II beam, unfocused HyGG-II beam and Laguerre Gaussian beam is also carried out. The results indicate that the employment of focusing mirrors is effective in enhancing the channel capacity, however, the corresponding transmission distance range is restricted to about 100 m. Optimal enhancement is observed near the convergence point of the HyGG-II beam focused by mirrors. By increasing the wavelength and adjusting the focal length of the focusing mirror or the waist radius of the HyGG-II beam, the channel capacity can be further improved. Moreover, when the HyGG-II beam is transmitted in oceanic turbulence characterized by a smaller dissipation rate of kinetic energy per unit mass and a larger dissipation rate of mean-squared temperature, the enhancement effect of the focusing mirrors on the channel capacity is more pronounced. Compared with Laguerre Gaussian beams, HyGG-II beams exhibit superior channel capacity at the same transmission distance, no matter whether focusing mirrors are used. The findings can serve as a reference for designing underwater wireless optical communication systems based on the HyGG-II-beam.
      Corresponding author: ZHANG Rongxiang, zrx@hbu.edu.cn ; LIU Tao, taoliu@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62071180) and the Optoelectronic Information Materials Laboratory Performance Subsidy Fund of Hebei Province, China (Grant No. 22567634H).
    [1]

    Xu L F, Zhou Z C, Ma X D, Korotkova O, Wang F 2024 Opt. Lett. 49 246Google Scholar

    [2]

    郭岩, 吕恒, 丁春玲, 袁晨志, 金瑞波 2025 74 014203Google Scholar

    Guo Y, Lyu H, Ding C L, Yuan C Z, Jin R B 2025 Acta Phys. Sin. 74 014203Google Scholar

    [3]

    Pan Y T, Wang P, Wang W, Li S, Cheng M J, Guo L X 2021 Opt. Express 29 12644Google Scholar

    [4]

    Zhan H C, Wang L, Wang W N 2022 J. Lightwave Technol. 40 4129Google Scholar

    [5]

    Zhan H C, Wang L, Wang W N, Zhao S M 2023 J. Opt. Soc. Am. B 40 187Google Scholar

    [6]

    Wang H, Li H, Zhou Y L, Wang P 2022 Opt. Eng. 61 046102

    [7]

    王明军, 刘豪振, 张佳琳, 王姣 2023 光学学报 43 2401004Google Scholar

    Wang M J, Liu H Z, Zhang J L, Wang J 2023 Acta Opt. Sin. 43 2401004Google Scholar

    [8]

    刘昌勋, 孙嘉敏, 商祥年, 顾永建, 李文东 2025 激光与光电子学进展 62 0301002Google Scholar

    Liu C X, Sun J M, Shang X N, Gu X N, Li W D 2025 Laser Optoelectron. Prog. 62 0301002Google Scholar

    [9]

    Karimi E, Piccirillo B, Marrucci L, Santamato E 2008 Opt. Express 16 21069Google Scholar

    [10]

    Jin G, Bian L R, Huang L, Tang B 2020 Opt. Laser Technol. 126 106124Google Scholar

    [11]

    Khannous F, Ebrahim A A A, Belafhal A 2016 Chin. Phys. B 25 044206Google Scholar

    [12]

    Gradshteyn I S, Ryzhik I M 2014 Table of Integrals, Series, and Products (New York: Academic Press) pp325–331

    [13]

    Torner L, Torres J, Carrasco S 2005 Opt. Express 13 873Google Scholar

    [14]

    Yang H B, Yan Q Z, Wang P, Hu L F, Zhang Y X 2022 Opt. Express 30 9053Google Scholar

    [15]

    Wang X, Wang L, Zhao S 2021 J. Mar. Sci. Eng. 9 442Google Scholar

    [16]

    Nikishov V V, Nikishov V I 2020 Int. J. Fluid Mech. Res. 27 82

    [17]

    Paterson C 2005 Phys. Rev. Lett. 94 153901Google Scholar

    [18]

    Wang S L, Yang D H, Zhu Y, Zhang Y X 2021 Appl. Opt. 60 4135Google Scholar

    [19]

    Tong Z J, Yang X Q, Chen X, Zhang H, Zhang Y F, Zou H W, Zhao Y F, Xu J 2021 Opt. Express 29 20262Google Scholar

    [20]

    Zhou H Y, Zhang M L, Wang X Z, Ren X M 2022 J. Lightwave Technol. 40 3654Google Scholar

    [21]

    Han X T, Li P, Li G Y, Chang C, Jia S W, Xie Z, Liao P X, Nie W C, Xie X P 2023 Photonics 10 451Google Scholar

    [22]

    Zhang T Y, Fei C, Wang Y, Du J, Xie Y T, Zhang F, Tian J H, Zhang G W, Wang G X, Hong X J, He S L 2024 Opt. Express 32 36207Google Scholar

    [23]

    Ma Z Q, Gao G J, Zhang J L, Guo Y G, Zhang F, Huang S G 2025 J. Lightwave Technol. 43 1140Google Scholar

  • 图 1  不同波长下聚焦HyGG-II光束、非聚焦HyGG-II光束和LG光束的信道容量随传输距离的变化

    Figure 1.  Variations of channel capacity with transmission distance for focused HyGG-II beam, unfocused HyGG-II beam, and LG beam with different wavelengths.

    图 2  不同焦距下聚焦HyGG-II光束和非聚焦HyGG-II光束的信道容量随传输距离的变化

    Figure 2.  Variations of channel capacity with transmission distance for unfocused HyGG-II beam and focused HyGG-II beam with different focal lengths.

    图 3  聚焦HyGG-II光束随传输距离的归一化光强分布

    Figure 3.  Normalized intensity distributions of focused HyGG-II beam with transmission distance.

    图 4  不同束腰半径下聚焦HyGG-II光束、非聚焦HyGG-II光束和LG光束的信道容量随传输距离的变化

    Figure 4.  Variations of channel capacity with transmission distance for focused HyGG-II beam, unfocused HyGG-II beam, and LG beam with different beam waists.

    图 5  不同单位质量动能耗散率下聚焦HyGG-II光束、非聚焦HyGG-II光束和LG光束的信道容量随传输距离的变化

    Figure 5.  Variations of channel capacity with transmission distance for focused HyGG-II beam, unfocused HyGG-II beam, and LG beam with different dissipation rates of kinetic energy per unit mass.

    图 6  不同温度均方差耗散率下聚焦HyGG-II光束、非聚焦HyGG-II光束和LG光束的信道容量随传输距离的变化

    Figure 6.  Variations of channel capacity with transmission distance for focused HyGG-II beam, unfocused HyGG-II beam, and LG beam with different dissipation rates of mean-squared temperature.

    图 7  不同温度盐度贡献比下聚焦HyGG-II光束、非聚焦HyGG-II光束和LG光束的信道容量随传输距离的变化

    Figure 7.  Variations of channel capacity with transmission distance for focused HyGG-II beam, unfocused HyGG-II beam, and LG beam with different ratios of temperature and salinity contributions.

    Baidu
  • [1]

    Xu L F, Zhou Z C, Ma X D, Korotkova O, Wang F 2024 Opt. Lett. 49 246Google Scholar

    [2]

    郭岩, 吕恒, 丁春玲, 袁晨志, 金瑞波 2025 74 014203Google Scholar

    Guo Y, Lyu H, Ding C L, Yuan C Z, Jin R B 2025 Acta Phys. Sin. 74 014203Google Scholar

    [3]

    Pan Y T, Wang P, Wang W, Li S, Cheng M J, Guo L X 2021 Opt. Express 29 12644Google Scholar

    [4]

    Zhan H C, Wang L, Wang W N 2022 J. Lightwave Technol. 40 4129Google Scholar

    [5]

    Zhan H C, Wang L, Wang W N, Zhao S M 2023 J. Opt. Soc. Am. B 40 187Google Scholar

    [6]

    Wang H, Li H, Zhou Y L, Wang P 2022 Opt. Eng. 61 046102

    [7]

    王明军, 刘豪振, 张佳琳, 王姣 2023 光学学报 43 2401004Google Scholar

    Wang M J, Liu H Z, Zhang J L, Wang J 2023 Acta Opt. Sin. 43 2401004Google Scholar

    [8]

    刘昌勋, 孙嘉敏, 商祥年, 顾永建, 李文东 2025 激光与光电子学进展 62 0301002Google Scholar

    Liu C X, Sun J M, Shang X N, Gu X N, Li W D 2025 Laser Optoelectron. Prog. 62 0301002Google Scholar

    [9]

    Karimi E, Piccirillo B, Marrucci L, Santamato E 2008 Opt. Express 16 21069Google Scholar

    [10]

    Jin G, Bian L R, Huang L, Tang B 2020 Opt. Laser Technol. 126 106124Google Scholar

    [11]

    Khannous F, Ebrahim A A A, Belafhal A 2016 Chin. Phys. B 25 044206Google Scholar

    [12]

    Gradshteyn I S, Ryzhik I M 2014 Table of Integrals, Series, and Products (New York: Academic Press) pp325–331

    [13]

    Torner L, Torres J, Carrasco S 2005 Opt. Express 13 873Google Scholar

    [14]

    Yang H B, Yan Q Z, Wang P, Hu L F, Zhang Y X 2022 Opt. Express 30 9053Google Scholar

    [15]

    Wang X, Wang L, Zhao S 2021 J. Mar. Sci. Eng. 9 442Google Scholar

    [16]

    Nikishov V V, Nikishov V I 2020 Int. J. Fluid Mech. Res. 27 82

    [17]

    Paterson C 2005 Phys. Rev. Lett. 94 153901Google Scholar

    [18]

    Wang S L, Yang D H, Zhu Y, Zhang Y X 2021 Appl. Opt. 60 4135Google Scholar

    [19]

    Tong Z J, Yang X Q, Chen X, Zhang H, Zhang Y F, Zou H W, Zhao Y F, Xu J 2021 Opt. Express 29 20262Google Scholar

    [20]

    Zhou H Y, Zhang M L, Wang X Z, Ren X M 2022 J. Lightwave Technol. 40 3654Google Scholar

    [21]

    Han X T, Li P, Li G Y, Chang C, Jia S W, Xie Z, Liao P X, Nie W C, Xie X P 2023 Photonics 10 451Google Scholar

    [22]

    Zhang T Y, Fei C, Wang Y, Du J, Xie Y T, Zhang F, Tian J H, Zhang G W, Wang G X, Hong X J, He S L 2024 Opt. Express 32 36207Google Scholar

    [23]

    Ma Z Q, Gao G J, Zhang J L, Guo Y G, Zhang F, Huang S G 2025 J. Lightwave Technol. 43 1140Google Scholar

Metrics
  • Abstract views:  1972
  • PDF Downloads:  52
  • Cited By: 0
Publishing process
  • Received Date:  10 March 2025
  • Accepted Date:  10 April 2025
  • Available Online:  17 April 2025
  • Published Online:  05 June 2025
  • /

    返回文章
    返回
    Baidu
    map