-
Magnetic skyrmions, characterized by their topological properties, serve as core components for developing next-generation non-volatile memory devices that demand high density, high speed, and low power consumption. Their formation arises from the Dzyaloshinskii-Moriya interaction (DMI), enabled by non-centrosymmetric structures. Two-dimensional Janus magnetic materials, which inherently break spatial inversion symmetry, readily generate strong DMI, providing an ideal platform for skyrmion generation and novel racetrack memory applications. Within this field, identifying systems with a high Curie temperature ($T_{\rm{C}}$) is crucial, as it directly governs magnetic property stability and application potential under high-temperature conditions. This study integrated literature and open-source databases to construct a dataset of 16, 880 ABC-type two-dimensional materials. Utilizing stoichiometric ratios, intrinsic elemental properties, and electronic structure features as descriptors, four machine learning models—Random Forest (RF), Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), and Extra Trees (ET)—were employed for $T_{\rm{C}}$ prediction. Model performance was evaluated via ten-fold cross-validation, revealing that the XGBoost model exhibited superior prediction accuracy and generalization capability. Leveraging this model, $T_{\rm{C}}$ was predicted for 4, 024 unexplored two-dimensional Janus materials. This screening identified 54 promising candidates possessing thermal stability, high magnetic moment, and a $T_{\rm{C}}$ exceeding 300 K. To verify reliability, four candidate systems (EuFeO, GdKTi, DyFeTb, ErFeGd) were randomly selected for theoretical validation using first-principles calculations combined with the Heisenberg model. For systems exhibiting strong correlation effects (containing d-orbital electrons), the Hubbard U parameter was incorporated to describe on-site Coulomb repulsion. Exchange coupling constants were derived using the VASP software package. Subsequently, $T_{\rm{C}}$ values were calculated via classical Monte Carlo simulations performed using the MCSOLVER program. Results demonstrate that the mean absolute error (MAE) of the predicted $T_{\rm{C}}$ agrees well with the model calculations for EuFeO and GdKTi, while larger deviations were observed for DyFeTb and ErFeGd. Nevertheless, the calculated $T_{\rm{C}}$ values for all four candidates surpass room temperature. This work establishes a new computational framework for the efficient screening of high-performance two-dimensional Janus magnetic materials, contributing to the advancement of magnetic storage technologies.
-
Keywords:
- machine learning /
- two-dimensional magnetic Janus materials /
- Curie temperature /
- first-principles calculations
-
表 1 四种算法模型的最优超参数
Table 1. Optimal hyperparameters of the four algorithmic models.
模型 超参数 RF $ D_{{\rm{max}}} $ = 16, $ F_{{\rm{max}}} $ = 0.20, $ N_{{\rm{e}}} $ = 150,
$ L_{{\rm{min}}} $ = 2, $ S_{{\rm{min}}} $ = 6GBDT $ L_{{\rm{r}}} $ = 0.04006057, $ N_{{\rm{e}}} $ = 400, $ D_{{\rm{max}}} $ = 9,
$ Sub $ = 0.8, $ L_{{\rm{min}}} $ = 6, $ S_{{\rm{min}}} $ = 4XGB $ L_{{\rm{r}}} $ = 0.01, $ D_{{\rm{max}}} $ = 14, $ N_{{\rm{e}}} $ = 550,
$ Sub $ = 0.72422896, $\gamma$ = 0.4, $ C_{{\rm{b}}} $ = 0.15ET $ D_{{\rm{max}}} $ = 15, $ F_{{\rm{max}}} $ = 0.46545387, $ N_{{\rm{e}}} $ = 200,
$ L_{{\rm{min}}} $ = 3, $ S_{{\rm{min}}} $ = 5表 2 居里温度预测: 四种机器学习模型的评价指标
Table 2. Curie temperature prediction: evaluation metrics for four machine learning models.
模型 MAE RMSE R2 RF 39.9912 82.2442 0.9175 GBDT 36.5400 79.1969 0.9235 XGB 33.5953 76.5587 0.9285 ET 40.7323 81.8218 0.9184 -
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
Google Scholar
[2] Zhang Z W, Lang Y F, Zhu H P, Li B, Zhao Y Q, Wei B, Zhou W X 2024 Phys. Rev. Appl. 21 064012
Google Scholar
[3] Liu B, Feng X X, Long M Q, Cai M Q, Yang J L 2022 Phys. Rev. Appl. 18 054036
Google Scholar
[4] Xiong X J, Zhong F, Zhang Z W, Chen F, Luo J L, Zhao Y Q, Zhu H P, Jiang S L 2024 Acta Phys. Sin. 73 137101
Google Scholar
[5] Zhao Y Q, Liu Z S, Nie G Z, Zhu Z H, Chai Y F, Wang J N, Cai M Q, Jiang S L 2021 Appl. Phys. Lett. 118 173104
Google Scholar
[6] Lang Y F, Zou D F, Xu Y, Jiang S L, Zhao Y Q, Ang Y S 2024 Appl. Phys. Lett. 124 052903
Google Scholar
[7] Liao C S, Ding Y F, Zhao Y Q, Cai M Q 2021 Appl. Phys. Lett. 119 182903
Google Scholar
[8] Tan W, Zhang Z W, Zhou X Y, Yu Z L, Zhao Y Q, Jiang S L, Ang Y S 2024 Phys. Rev. Mater. 8 094414
Google Scholar
[9] Lu X, Fei R, Yang L 2019 PHYSICAL REVIEW B 100
[10] Jiang Z, Wang P, Jiang X, Zhao J 2018 NANOSCALE HORIZONS 3 335
Google Scholar
[11] Sanvito S, Oses C, Xue J, Tiwari A, Zic M, Archer T, Tozman P, Venkatesan M, Coey M, Curtarolo S 2017 SCIENCE ADVANCES 3
[12] Zhang S Q, Xu R Z, Luo N N, Zou X L 2021 Nanoscale 13 1398
Google Scholar
[13] Dai C Y, He P, Luo L X, Zhan P X, Guan B, Zheng J 2023 Sci. China Mater. 66 859
Google Scholar
[14] Wang P, Zong Y X, Wen H Y, Xia J B, Wei Z M 2021 Acta Phys. Sin. 70 026801
Google Scholar
[15] Ren K, Wang K, Zhang G 2022 ACS Appl. Electron. Mater. 4 4507
Google Scholar
[16] Peng Z L, Huang J X, Guo Z G 2021 Nanoscale 13 18839
Google Scholar
[17] Zhang L, Yang Z J F, Gong T, Pan R K, Wang H D, Guo Z N, Zhang H, Fu X 2020 J. Mater. Chem. A 8 8813
Google Scholar
[18] Vafaeezadeh M, Thiel W R 2022 Angew. Chem. Int. Edit. 61 e202206403
Google Scholar
[19] Mukherjee T, Kar S, Ray S 2022 J. Mater. Res. 37 3418
Google Scholar
[20] Li C Q, An Y K 2022 Phys. Rev. B 106 115417
Google Scholar
[21] Zhang L, Zhao Y, Liu Y Q, Gao G Y 2023 Nanoscale 15 18910
Google Scholar
[22] Xu L J, Wan W H, Peng Y R, Ge Y F, Liu Y 2024 Ann. Phys. 536 2300388
Google Scholar
[23] Gao Z Y, Mao G Y, Chen S Y, Bai Y, Gao P, Wu C C, Gates I D, Yang W J, Ding X L, Yao J X 2022 Phys. Chem. Chem. Phys. 24 3460
Google Scholar
[24] Liu H, Sun J T, Liu M, Meng S 2018 J. Phys. Chem. Lett. 9 6709
Google Scholar
[25] Nelson J, Sanvito S 2019 Phys. Rev. Mater. 3 104405
Google Scholar
[26] Belot J F, Taufour V, Sanvito S, Hart G L 2023 Appl. Phys. Lett. 123 042405
Google Scholar
[27] Miyazato I, Tanaka Y, Takahashi K 2018 J. Phys.: Condens. Matter 30 06L
[28] Lu S H, Zhou Q H, Guo Y L, Zhang Y H, Wu Y L, Wang J L 2020 Adv. Mater. 32 2002658
Google Scholar
[29] Ma X Y, Lyu H Y, Hao K R, Zhao Y M, Qian X F, Yan Q B, Su G 2021 Sci. Bull. 66 233
Google Scholar
[30] Huang T, Yang Z X, Li L, Wan H, Leng C, Huang G F, Hu W Y, Huang W Q 2024 J. Phys. chem. Lett. 15 2428
Google Scholar
[31] Chaney G, Ibrahim A, Ersan F, Çakır D, Ataca C 2021 ACS Appl. Mater. Interfaces 13 36388
Google Scholar
[32] Yan X H, Zheng J M, Zhao X, Zhao P J, Guo P, Jiang Z Y 2024 Phys. Status Solidi Rapid Res. Lett. 18 2300468
Google Scholar
[33] Xin C, Yin Y, Song B, Fan Z, Song Y, Pan F 2023 Chip 2 100071
Google Scholar
[34] Jung S G, Jung G, Cole J M 2024 JOURNAL OF CHEMICAL INFORMATION AND MODELING 64 6388
Google Scholar
[35] Qiao Z, Wei T, Ning Y Q, Nie G Z, Cai M Q, Wang J N, Zhu H P, Zhao Y Q 2024 ACTA PHYSICA SINICA 73
[36] Ward L, Dunn A, Faghaninia A, Zimmermann N E, Bajaj S, Wang Q, Montoya J, Chen J, Bystrom K, Dylla M, Chard K, Asta M, Persson K A, Snyder G J, Foster I, Jain A 2018 Comp. Mater. Sci. 152 60
Google Scholar
[37] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E 2011 J. Mach. Learn. Res. 12 2825
[38] Ester M, Kriegel H P, Xu X 2023 Geogr. Anal. 55 207
Google Scholar
[39] Wu J, Chen X Y, Zhang H, Xiong L D, Lei H, Deng S H 2019 J. Electron. Sci. Technol. 17 26
[40] Ma Q Y, Wan W H, Ge Y F, Li Y M, Liu Y 2022 J. Magn. Magn. Mater. 605 172314
[41] Yin W J, Tan H J, Ding P J, Wen B, Li X B, Teobaldi G, Liu L M 2021 Mater. Adv. 2 7543
Google Scholar
Metrics
- Abstract views: 428
- PDF Downloads: 14
- Cited By: 0









DownLoad: