Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transport properties of multiferroic tunnel junctions based on sliding ferroelectric VTe2

ZHU Xiaolong LIU Yulin

Citation:

Transport properties of multiferroic tunnel junctions based on sliding ferroelectric VTe2

ZHU Xiaolong, LIU Yulin
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Multiferroic tunnel junctions (MFTJs)—characterized by a ferroelectric barrier encapsulated between two ferromagnetic electrodes—represent a highly promising platform for next-generation nonvolatile memory applications. The recent discovery of intrinsic ferromagnetism and ferroelectricity in van der Waals (vdW) materials further provides a compelling material foundation for constructing multifunctional MFTJs based on vdW heterostructures. In this paper, towards high-performance and multifunctional van der Waals multiferroic tunnel junctions (vdW-MFTJs) devices, we investigate the spin-dependent transport properties of vdW-MFTJs with a bilayer VTe2 sliding ferroelectric barrier and Fe3GaTe2/Fe3GeTe2 magnetic electrodes using first-principles calculations based on density functional theory (DFT). Our results reveal that multiple non-volatile resistance states can be achieved by controlling the polarization direction of the ferroelectric barrier and the magnetization configuration of the ferromagnetic electrodes in the Fe3GaTe2/bilayer VTe2/Fe3GeTe2 MFTJs. Specifically, when the double-layer ferroelectric material VTe2 undergoes relative interlayer slippage, the polarization of the ferroelectric barrier switches from a left-oriented state (P←) to a right-oriented state (P→). Consequently, the tunneling magnetoresistance (TMR) ratio at the Fermi level increases from 7.27×105% to 1.01×106%. Moreover, switching the magnetization configuration of the ferromagnetic electrodes from parallel alignment (M↑↑) to antiparallel alignment (M↑↓) leads to an almost twofold increase in the tunneling electroresistance (TER) ratio. Furthermore, nearly 100% spin filtering efficiency is observed across all four non-volatile resistance states of the MFTJs. These findings demonstrate that the engineered Fe3GaTe2/bilayer VTe2/Fe3GeTe2 MFTJs holds promising potential for applications in multi-state non-volatile memory and spin filters, providing a versatile platform for developing multifunctional electronic devices.
  • 图 1  双层VTe2两种不同构型(a) P↑和(b) P↓的顶视图和侧视图. P↑和P↓分别表示极化向上和极化向下. 橙色和白色球体分别代表Te原子和V原子

    Figure 1.  Top and side views of the bilayer VTe2 with two different configurations (a) P↑ and b (P↓). P↑ and P↓ denote polarization up and polarization down, respectively. Orange and white spheres represent Te and V atoms.

    图 2  (a) 极化为P↑和(b) P↓的双层VTe2结构沿z方向的电荷密度差(左)和平面平均电荷密度差(右). 紫色和蓝色分别代表电子耗尽和积累. 等值面值设定为0.00024 e3

    Figure 2.  The charge density difference along the z direction (left panels) and plane-averaged charge density difference (right panels) for the bilayer VTe2 structure with (a) polarization P↑ and (b) polarization P↓. Purple and blue colors represent electron depletion and accumulation, respectively. The isosurface value is set to 0.00024 e3.

    图 3  Fe3GaTe2 (a)和Fe3GeTe2 (b) 的结构示意图. (c)、(d)为(a)、(b)对应的能带图, 自旋向上(spin up)和自旋向下(spin down)分别用红线和蓝线表示. 图中橙色、粉色、绿色、黄色球体分别代表Fe, Ga, Ge, Te原子

    Figure 3.  Structural diagrams of Fe3GaTe2 (a) and Fe3GeTe2 (b). (c) and (d) show the corresponding band structures for (a) and (b), with spin up and spin down represented by red and blue lines, respectively. Orange, pink, green, and yellow spheres correspond to Fe, Ga, Ge, and Te atoms, respectively.

    图 4  (a)、(b)考虑了中间铁电层(VTe2)与左右两边铁磁层(Fe3GaTe2、Fe3GeTe2)的三种高对齐方式(左V-Te、V-Fe和V-Ga; 右V-Te、V-Fe和V-Ge)以及计算的相应不同对齐情况下的总能量. 虚线表示原子对齐, 这里仅给出三种所考虑的对齐中的一种作为示例. (c)堆叠出的最稳定的器件示意图, 中间红色箭头P的方向表示VTe2对应极化方向, 磁化强度M定义为磁矩矢量, 其中向右(+z)和向左(–z)的取向分别用黑色和蓝色箭头表示. 左右电极延伸至无穷远, 器件在xy平面内具有周期性, 且电流沿z方向流动

    Figure 4.  (a), (b) Three high alignments of the intermediate ferroelectric layer (VTe2) and the left and right ferromagnetic layers (Fe3GaTe2, Fe3GeTe2) are considered (left V-Te, V-Fe, and V-Ga; right, V-Te, V-Fe, and V-Ge) and the calculated total energy for the corresponding different alignments. The dotted line represents the atomic alignment, and only one of the three alignments considered is given here as an example. (c) Schematic diagram of the most stable device stacked, the direction of red arrow P denotes polarization of VTe2. Magnetization M is defined as magnetic moment vector, with right (+z) and left (–z) orientations shown by black/blue arrows. Electrodes extend to infinity, device is periodic in xy-plane, and current flows along z-direction.

    图 5  (a)和(b)分别为M↑↑和M↑↓的P→状态下MFTJs电子透射光谱. 黑线和红线分别表示自旋向上和自旋向下

    Figure 5.  (a) and (b) The electron transmission spectrum for the MFTJs in the P→ state with M↑↑ and M↑↓, respectively. Black and red lines represent spin-up and spin-down, respectively.

    图 6  (a)和(b)分别为M↑↑和M↑↓的P→态中MFTJs的自旋相关投影局域态密度. 绿色虚线代表费米能级

    Figure 6.  (a) and (b) are the spin-dependent projected local density of states of MFTJs in the P→ states of M↑↑ and M↑↓, respectively. The green dotted line represents the Fermi level.

    图 7  (a) 处于P←(左)和P→(右)状态的MFTJs的透射谱(自旋向上和自旋向下透射的总和). 黑线和红线分别代表M↑↑和M↑↓态的透射光谱. (b) MFTJs在M↑↑(左)和M↑↓(右)状态下的电子透射谱. 黑线和红线分别代表P→和P←的电子透射光谱. (c) P→和P←状态下MFTJs的TMR. 黑线和红线分别代表P→和P←的TMR. (d) MFTJs在M↑↑和M↑↓状态下的TER. 黑线和红线分别代表M↑↑和M↑↓的TER

    Figure 7.  (a) Transmission spectra of MFTJs in the P← (left) and P→ (right) states (sum of spin-up and spin-down transmissions). The black and red lines represent the transmission spectra of the M↑↑ and M↑↓ states, respectively. (b) Electron transmission spectra of MFTJs in M↑↑ (left) and M↑↓ (right). The black and red lines represent the electron transmission spectra of P→ and P←, respectively. (c) TMR of MFTJs in P→ and P← states. The black and red lines represent the TMRs of P→ and P←, respectively. (d) MFTJs in M↑↑ and M↑↓ TER. The black and red lines represent M↑↑ and M↑↓, respectively.

    表 1  Fe3GaTe2/VTe2双层膜/Fe3GeTe2的自旋相关电子透射T↑、T↓和$ T_{\rm{tot}} $、自旋过滤效率$ \eta{\text{%}} $、TMR和TER. 这里$ T_{\rm{tot}} $ = T↑ + T

    Table 1.  The spin-dependent electron transmission parameters of the Fe3GaTe2/VTe2 bilayer/Fe3GeTe2 system include T↑, T↓, $ T_{\rm{tot}} $ (where $ T_{\rm{tot}} $ = T↑ + T↓), spin filtering efficiency $ \eta{\text{%}} $, TMR, and TER.

    M↑↑ M↑↓ TMR
    T T $ T_{\rm{tot}} $ $ \eta $(%) T T $ T_{\rm{tot}} $ $ \eta $(%)
    P 0.058 0 0.058 100% 8.05×10–6 0 8.05×10–6 100% 7.27×105%
    P 0.065 0 0.065 100% 6.51×10–6 0 6.51×10–6 100% 1.01×106%
    TER 12.07% 23.66%
    DownLoad: CSV
    Baidu
  • [1]

    Theis T N, Wong H S P 2017 Comput. Sci. Eng 19 41Google Scholar

    [2]

    Lundstrom M S, Alam M A 2022 Sci 378 722Google Scholar

    [3]

    Wong H S P, Salahuddin S 2015 Nat. Nanotechnol 10 191Google Scholar

    [4]

    Lanigan-Atkins T, He X, Krogstad M, Pajerowski D, Abernathy D, Xu G N, Xu Z, Chung D Y, Kanatzidis M, Rosenkranz S, et al 2021 Nat. Mater 20 977Google Scholar

    [5]

    Behin-Aein B, Datta D, Salahuddin S, Datta S 2010 Nat. Nanotechnol 5 266Google Scholar

    [6]

    Apalkov D, Khvalkovskiy A, Watts S, Nikitin V, Tang X, Lottis D, Moon K, Luo X, Chen E, Ong A, et al 2013 JETC 9 1

    [7]

    Wadley P, Howells B, Železnỳ J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S, et al 2016 Sci 351 587Google Scholar

    [8]

    Manchon A, Železnỳ J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P 2019 Rev. Mod. Phys 91 035004Google Scholar

    [9]

    Dieny B, Prejbeanu I L, Garello K, Gambardella P, Freitas P, Lehndorff R, Raberg W, Ebels U, Demokritov S O, Akerman J, et al 2020 Nat. Electron 3 446Google Scholar

    [10]

    张明媚, 郭亚涛, 付旭日, 李梦蕾, 任宝藏, 郑军, 袁瑞玚 2020 72 157202

    Zhang M M, Guo Y T, Fu X R, Li M L, Ren B C, Jun Z, Yuan R Y Acta Phys. Sin. 72 157202

    [11]

    Velev J P, Duan C G, Burton J, Smogunov A, Niranjan M K, Tosatti E, Jaswal S, Tsymbal E Y 2009 Nano Lett 9 427Google Scholar

    [12]

    Barrionuevo D, Zhang L, Ortega N, Sokolov A, Kumar A, Misra P, Scott J, Katiyar R 2014 NANO TECHNOLOGY 25 495203

    [13]

    Merodio P, Kalitsov A, Chshiev M, Velev J 2016 Phys. Rev. Appl. 5 064006Google Scholar

    [14]

    Manipatruni S, Nikonov D E, Lin C C, Gosavi T A, Liu H, Prasad B, Huang Y L, Bonturim E, Ramesh R, Young I A 2019 NATURE 565 35Google Scholar

    [15]

    Guo X H, Zhu L, Cao Z L, Yao K L 2024 PCCP 26 3531Google Scholar

    [16]

    Ruixia Y, Xujin Z, Jianhua X, Zhi Y, Fang W, Xiaohong X 2025 Chin. Phys. Lett. 42 070705Google Scholar

    [17]

    ZHANG J, YU P 2013 J Chin Ceram Soc 41 905

    [18]

    Yin Y, Li Q 2017 J. Materiomics 3 245Google Scholar

    [19]

    Zhang Y, Li X, Sheng J, Yu S, Zhang J, Su Y 2023 APL 123

    [20]

    Lei Y, Xu Y, Wang M, Zhu G, Jin Z 2021 SMALL 17 2005495Google Scholar

    [21]

    吴燕飞, 朱梦媛, 赵瑞杰, 刘心洁, 赵云驰, 魏红祥, 张静言, 郑新奇, 申见昕, 黄河, 王守国 2022 71 048502

    Wu Y F, Zhu M Y, Zhao R J, Liu X J, Zhao Y C, Wei H X, Zhang J Y, Zheng X Q, Shen J X, Huang H, Wang S G Acta. Phys. Sin. 71 048502

    [22]

    Zheng C, Yu L, Zhu L, Collins J L, Kim D, Lou Y, Xu C, Li M, Wei Z, Zhang Y, et al 2018 Sci. Adv 4 eaar7720Google Scholar

    [23]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, et al 2016 Nat. Commun 7 1

    [24]

    Feng Y, Han J, Zhang K, Lin X, Gao G, Yang Q, Meng S 2024 Phys. Rev. B 109 085433Google Scholar

    [25]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, et al 2018 NATURE 563 94Google Scholar

    [26]

    Ke J, Yang M, Xia W, Zhu H, Liu C, Chen R, Dong C, Liu W, Shi M, Guo Y, et al 2020 JPCM 32 405805

    [27]

    Huang M, Ma Z, Wang S, Li S, Li M, Xiang J, Liu P, Hu G, Zhang Z, Sun Z, et al 2021 2 D MATER 8 031003

    [28]

    Jiang P, Wang C, Chen D, Zhong Z, Yuan Z, Lu Z Y, Ji W 2019 Phys. Rev. B 99 144401Google Scholar

    [29]

    Su Y, Li X, Zhu M, Zhang J, You L, Tsymbal E Y 2020 Nano Lett 21 175

    [30]

    Yan Z, Li Z, Han Y, Qiao Z, Xu X 2022 Phys. Rev. B 105 075423Google Scholar

    [31]

    Chen Y, Tang Z, Dai M, Luo X, Zheng Y 2022 NANOSCALE 14 8849Google Scholar

    [32]

    Wu M 2021 NAT REV PHYS 3 726Google Scholar

    [33]

    钟婷婷, 吴梦昊 2020 69 217707Google Scholar

    Zhong T T, Wu M H 2020 Acta Phys. Sin. 69 217707Google Scholar

    [34]

    Liu Y, Liu G, Xi X 2025 Chin. Phys. B 34 017701Google Scholar

    [35]

    Wan Y, Hu T, Mao X, Fu J, Yuan K, Song Y, Gan X, Xu X, Xue M, Cheng X, et al 2022 Phys. Rev. Lett 128 067601Google Scholar

    [36]

    Yasuda K, Wang X, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Sci 372 1458Google Scholar

    [37]

    Wang C, An Y 2021 Appl. Surf. Sci 538 148098Google Scholar

    [38]

    Fuh H R, Chang C R, Wang Y K, Evans R F, Chantrell R W, Jeng H T 2016 Sci. Rep 6 32625Google Scholar

    [39]

    Garcia V, Bibes M 2014 Nat. Commun 5 4289Google Scholar

    [40]

    Zhang R, Jiao R, Fu Z, Yuan H, He J, Shen L, Liao X, Zhou Y, Yuan J 2025 Phys. Rev. B 111 155414Google Scholar

    [41]

    Yan Z, Yang R, Fang C, Lu W, Xu X 2024 Phys. Rev. B 109 205409Google Scholar

    [42]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, et al 2018 Nat. Mater 17 778Google Scholar

    [43]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [44]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [45]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671Google Scholar

    [46]

    Johnson E R, Becke A D 2005 J. Chem. Phys 123

    [47]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [48]

    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K 2004 Nat. Mater 3 868Google Scholar

    [49]

    Tao L, Wang J 2016 APL 108

    [50]

    Ma J, Luo X, Zheng Y 2024 Npj Comput. Mater 10 102Google Scholar

  • [1] DENG Xiaosong, ZHANG Zhiyong, KANG Ning. Research on hybrid superconducting devices and quantum transport based on one-dimensional electronic systems. Acta Physica Sinica, doi: 10.7498/aps.74.20241672
    [2] KONG Junran, MAO Mang, LIU Huan, WANG Chen. Quantum heat transport in nonequilibrium anisotropic Dicke model. Acta Physica Sinica, doi: 10.7498/aps.74.20251007
    [3] ZHOU Wen, PENG Shuping, DENG Shuling, WU Dan, FAN Zhiqiang, ZHANG Xiaojiao. Design and transport properties of multifunctional spintronic devices based on zigzag SiC nanoribbon via edge asymmetric dual-hydrogenation. Acta Physica Sinica, doi: 10.7498/aps.74.20250553
    [4] Ding Jin-Ting, Hu Pei-Jia, Guo Ai-Min. Electron transport in graphene nanoribbons with line defects. Acta Physica Sinica, doi: 10.7498/aps.72.20230502
    [5] Liu Tian, Li Zong-Liang, Zhang Yan-Hui, Lan Kang. Study of quantum speed limit of of transport process of single quantum dot system in dissipative environment. Acta Physica Sinica, doi: 10.7498/aps.72.20222159
    [6] Gao Jian-Hua, Sheng Xin-Li, Wang Qun, Zhuang Peng-Fei. Relativistic spin transport theory for spin-1/2 fermions. Acta Physica Sinica, doi: 10.7498/aps.72.20222470
    [7] Fang Jing-Yun, Sun Qing-Feng. Thermal dissipation of electric transport in graphene p-n junctions in magnetic field. Acta Physica Sinica, doi: 10.7498/aps.71.20220029
    [8] Hu Hai-Tao, Guo Ai-Min. Quantum transport properties of bilayer borophene nanoribbons. Acta Physica Sinica, doi: 10.7498/aps.71.20221304
    [9] Li Jia-Jin, Liu Qian, Wu Dan, Deng Xiao-Qing, Zhang Zhen-Hua, Fan Zhi-Qiang. Giant rectification of ferromagnetic zigzag SiC nanoribbons connecting anthradithiophene molecules. Acta Physica Sinica, doi: 10.7498/aps.71.20212193
    [10] Li Chun-Lei, Xu Yan, Zheng Jun, Wang Xiao-Ming, Yuan Rui-Yang, Guo Yong. Light-field assisted spin-polarized transport properties in magnetic-electric barrier structures. Acta Physica Sinica, doi: 10.7498/aps.69.20200237
    [11] Cui Xing-Qian, Liu Qian, Fan Zhi-Qiang, Zhang Zhen-Hua. Effects of oxygen adsorption on spin transport properties of single anthracene molecular devices. Acta Physica Sinica, doi: 10.7498/aps.69.20201028
    [12] Wu Xin-Yu, Han Wei-Hua, Yang Fu-Hua. Quantum transport relating to impurity quantum dots in silicon nanostructure transistor. Acta Physica Sinica, doi: 10.7498/aps.68.20190095
    [13] Yan Jie, Wei Miao-Miao, Xing Yan-Xia. Dephasing effect of quantum spin topological states in HgTe/CdTe quantum well. Acta Physica Sinica, doi: 10.7498/aps.68.20191072
    [14] Yan Rui, Wu Ze-Wen, Xie Wen-Ze, Li Dan, Wang Yin. First-principles study on transport property of molecular} device with non-collinear electrodes. Acta Physica Sinica, doi: 10.7498/aps.67.20172221
    [15] Wang Hui, Hu Gui-Chao, Ren Jun-Feng. Effect of disturbance on spin polarized transport through an organic ferromagnetic device. Acta Physica Sinica, doi: 10.7498/aps.60.127201
    [16] Fu Bang, Deng Wen-Ji. General solutions to spin transportation of electrons through equilateral polygon quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, doi: 10.7498/aps.59.2739
    [17] Yin Yong-Qi, Li Hua, Ma Jia-Ning, He Ze-Long, Wang Xuan-Zhang. Quantum transport of multi-terminal coupled-quantum-dot-molecular bridge. Acta Physica Sinica, doi: 10.7498/aps.58.4162
    [18] Li Peng, Deng Wen-Ji. Exact solutions to the transportation of electrons through equilateral polygonal quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, doi: 10.7498/aps.58.2713
    [19] Tang Zhen-Kun, Wang Ling-Ling, Tang Li-Ming, You Kai-Ming, Zou Bing-Suo. Spin polarized transport of two-dimensional electron gas through step-magnetic barrier structure. Acta Physica Sinica, doi: 10.7498/aps.57.5899
    [20] Qin Jian-Hua, Guo Yong, Chen Xin-Yi, Gu Bing-Lin. A study on spin-polarized transport properties in magnetic-electric barrier st ructures. Acta Physica Sinica, doi: 10.7498/aps.52.2569
Metrics
  • Abstract views:  308
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  06 June 2024
  • Accepted Date:  21 August 2025
  • Available Online:  02 September 2025
  • /

    返回文章
    返回
    Baidu
    map