搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非平衡各向异性Dicke模型中的量子热能输运

孔俊然 毛铓 刘焕 王晨

引用本文:
Citation:

非平衡各向异性Dicke模型中的量子热能输运

孔俊然, 毛铓, 刘焕, 王晨

Quantum heat transport in the nonequilibrium anisotropic Dicke model

Jun-Ran Kong, Mang Mao, Huan Liu, Chen Wang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 量子光-物质相互作用系统的非平衡热能输运近来引起密切关注.本文研究非平衡各向异性Dicke模型中的量子热流及热整流行为.通过引入量子缀饰态主方程处理光子-量子比特强耦合.研究结果表明,各向异性光子-量子比特强耦合能有效调节热流.量子比特数增多有利于增强热流.在热力学极限近似和极限各向异性系数下,得到热流的解析表达式.该热流解析式为有限尺寸各向异性Dicke模型的热流上限.较大的各向异性系数和光子-量子比特非弱耦合有助于实现显著的热整流效应.笔者希望这些结果能够加深对各向异性光-物质相互作用系统中非平衡热能输运的理解.
    Nonequilibrium heat transport and quantum thermodynamics in quantum light-matter interacting systems have recently attracted increasing attention. Consequently, quantum thermal devices, e.g., heat valve and head diode have been realized. Here, we investigate quantum heat flow in the nonequilibrium anisotropic Dicke model, where an ensemble of qubits collectively interacts with a photon field with anisotropic forms, each component individually interacting with bosonic thermal reservoirs. The quantum dressed master equation (DME) is included to properly study dissipative dynamics of the anisotropic Dicke model, which is able to handle strong qubit-photon coupling within the eigenbasis of the reduced anisotropic Dicke system. Our results demonstrate that anisotropic qubit-photon interactions are crucial for modulating steady-state heat flow, particularly at moderate and strong couplings. We also find that the analytical expressions of heat flows in the thermodynamic limit with limiting anisotropic factors can be used as the upper boundaries for the heat flows in the anisotropic Dicke model with finite qubit numbers. These heat flows exhibit cotunneling microscopic transport processes. Moreover, the large anisotropic factor and nonweak qubit-photon coupling are helpful in achieving the giant thermal rectification effect. We hope these results may deepen the understanding of nonequilibrium heat transport in the anisotropic quantum light-matter interacting systems.
  • [1]

    Cohen-Tannoudji C, Dupont-Roc J, Grynberg G 1998 Atom-Photon Interactions: Basic Processes and Applications (Wiley-VCH, New Jersey)

    [2]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge University Press, Cambridge)

    [3]

    Haroche S, Brune M, Raimond J M 2020 Nat. Phys. 16 243

    [4]

    Kurizki G, Bertet P, Kubo Y, Molmer K, Petrosyan D, Rabl P, Schmiedmayer J 2015 PNAS 112 3866

    [5]

    Gonzalez-Tudela A, Reiserer A, Garcia-Ripoll J J, Garcia-Vidal F J 2024 Nat. Rev. Phys. 6 166

    [6]

    Ronzani A, Karimi B, Senior J, Chang Y C, Peltonen J T, Chen C D, Pekola J P 2018 Nat. Phys. 14 991

    [7]

    Pekola J P, Karimi B 2021 Rev. Mod. Phys. 93 041001

    [8]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89

    [9]

    Greentree A D, Koch J, Larson J 2013 J. Phys. B 46 220201

    [10]

    Blais A, Girvin S M, Oliver W D 2020 Nat. Phys. 16 247

    [11]

    Blais A, Grimsmo A L, Girvin S M, Wallraff A 2021 Rev. Mod. Phys. 93 025005

    [12]

    Petersson K D, McFaul L W, Schroer M D, Jung M, Taylor J M, Houck A A, Petta J R 2012 Nature 490 380

    [13]

    Lin T, Li H O, Cao G, Guo G P 2023 Chin. Phys. B 32 070307

    [14]

    Jaako T, Garcia-Ripoll J J, Rabl P 2020 Adv. Quantum Technol. 3 1900125

    [15]

    Cai M L, Liu Z D, Zhao W D, Wu Y K, Mei Q X, Jiang Y, He L, Zhang X, Zhou Z C, Duan L M 2021 Nat. Commun. 12 1126

    [16]

    Rabi I I 1936 Phys. Rev. 49 324

    [17]

    Rabi I I 1937 Phys. Rev. 51 652

    [18]

    Braak D 2011 Phys. Rev. Lett. 107 100401

    [19]

    Braak D, Chen Q H, Batchelor M T, Solano E 2016 J. Phys. B 49 300301

    [20]

    Xie Q T, Cui S, Cao J P, Amico L, Fan H 2014 Phys. Rev. X 4 021046

    [21]

    Lyu G T, Kottmann K, Plenio M B, Myung-Joong H 2024 Phys. Rev. Research 6 033075

    [22]

    Lu J H, Ning W, Zhu X, Wu F, Shen L T, Yang Z B, Zheng S B 2022 Phys. Rev. A 106 062616

    [23]

    Zhu X, Lu J H, Ning W, Wu F, Shen L T, Yang Z B, Zheng S B 2023 Science China Physics, Mechanics, and Astronomy 66 250313

    [24]

    Chen Z H, Che H X, Chen Z K, Wang C, Ren J 2022 Phys. Rev. Research 4 013152

    [25]

    Ye T, Wang C, Chen Q H 2023 Physica A 609 128364

    [26]

    Ye T, Wang C, Chen Q H 2024 Optics Express 32 33483

    [27]

    Zhang Y Y, Chen X Y 2017 Phys. Rev. A 96 063821

    [28]

    Dicke R H, 1954 Phys. Rev. 93 99

    [29]

    Kirton P, Roses M M, Keeling J, Dalla Torre E G 2018 Adv. Quantum Technol. 2 1800043

    [30]

    Emary C, Brandes T 2003 Phys. Rev. Lett. 90 044101

    [31]

    Lambert N, Emary C, Brandes T 2004 Phys. Rev. Lett. 92 073602

    [32]

    Gyhm Ju-Yeon, Safranek D, Rosa D 2022 Phys. Rev. Lett. 128 140501

    [33]

    Dou F Q, Lu Y Q, Wang Y J, Sun J A 2022 Phys. Rev. A 106 032212

    [34]

    Huang B Y, He Z, Chen Y 2023 Acta Phys. Sin. 72 180301

    [35]

    Seidov S S, Mukhin S I 2024 Phys. Rev. A 109 022210

    [36]

    Weiss U 2021 Quantum Dissipative Systems (World Scientific, Singapore)

    [37]

    Chiacchio1 E I R, Nunnenkamp A, Brunelli M 2023 Phys. Rev. Lett. 131 113602

    [38]

    Mivehvar F 2024 Phys. Rev. Lett. 132 073602

    [39]

    Vivek G, Mondal D, Chakraborty S, Sinha S 2025 Phys. Rev. Lett. 134 113404

    [40]

    Gong Z P, Hamazaki R, Ueda M 2018 Phys. Rev. Lett. 120 040404

    [41]

    Jager S B, Giesen J M, Schneider I, Eggert S 2024 Phys. Rev. A 110 L010202

    [42]

    Kirton P, Keeling J 2018 New J. Phys. 20 015009

    [43]

    Strashko A, Kirton P, Keeling J 2018 Phys. Rev. Lett. 121 193601

    [44]

    Das P, Bhakuni D S, Sharma A 2023 Phys. Rev. A 107 043706

    [45]

    Chen X Y, Zhang Y Y, Chen Q H, Lin H Q 2024 Phys. Rev. A 110 063722

    [46]

    Buijsman1 W, Gritsev V, Sprik R 2017 Phys. Rev. Lett. 118 080601

    [47]

    Zhu X, Lu J H, Ning W, Shen L T, Wu F, Yang Z B 2024 Phys. Rev. A 109 052621

    [48]

    Senior J, Gubaydullin A, Karimi B, Peltonen J T, Ankerhold J, Pekola J P 2020 Communications Physics 3 40

    [49]

    Gubaydullin A, Thomas G, Golubev D S, Lvov D, Peltonen J T, Pekola J P 2022 Nat. Commun. 13 1552

    [50]

    Liu Y Q, Yang Y J, Yu C S, 2023 Phys. Rev. E 107 044121

    [51]

    Zhao X D, Xing Y, Cao J, Liu S T, Cui W X, Wang H F, 2023 npj Quantum Information 9 59

    [52]

    Lu J C, Wang R Q, Ren J, Kulkarni M, Jiang J H 2019 Phys. Rev. B 99 035129

    [53]

    Majland M, Christensen K S, Zinner N T 2020 Phys. Rev. B 101 184510

    [54]

    Wang C, Chen H, Liao J Q 2021 Phys. Rev. A 104 033701

    [55]

    Andolina G M, Erdman P A, Noe F, Pekola J, Schiro M 2024 Phys. Rev. Research 6 043128

    [56]

    Beaudoin F, Gambetta J M, Blais A 2011 Phys. Rev. A 84 043832

    [57]

    Altintas F, Eryigit R 2013 Phys. Rev. A 87 022124

    [58]

    Le Boite A 2020 Adv. Quantum Technol. 3 1900140

    [59]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203

    [60]

    Li N B, Ren J, Wang L, Zhang G, Hanggi P, Li B 2012 Rev. Mod. Phys. 84 1045

    [61]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301

    [62]

    Zhang L F, Yan Y H, Wu C Q, Wang J S, Li B W 2009 Phys. Rev. B 80 172301

  • [1] 王玉, 梁钰林, 邢燕霞. 石墨烯中的拓扑安德森绝缘体相.  , doi: 10.7498/aps.74.20241031
    [2] 朱小龙, 刘雨林. 基于滑移铁电VTe2多铁隧道结的输运性质研究.  , doi: 10.7498/aps.74.20250734
    [3] 邓小松, 张志勇, 康宁. 基于一维电子体系的超导复合器件和量子输运研究.  , doi: 10.7498/aps.74.20241672
    [4] 高建华, 盛欣力, 王群, 庄鹏飞. 费米子的相对论自旋输运理论.  , doi: 10.7498/aps.72.20222470
    [5] 丁锦廷, 胡沛佳, 郭爱敏. 线缺陷石墨烯纳米带的电输运研究.  , doi: 10.7498/aps.72.20230502
    [6] 刘天, 李宗良, 张延惠, 蓝康. 耗散环境单量子点体系输运过程的量子速度极限研究.  , doi: 10.7498/aps.72.20222159
    [7] 裴思辉, 宋子旋, 林星, 方伟. 开放式法布里-珀罗光学微腔中光与单量子系统的相互作用.  , doi: 10.7498/aps.71.20211970
    [8] 方静云, 孙庆丰. 石墨烯p-n结在磁场中的电输运热耗散.  , doi: 10.7498/aps.71.20220029
    [9] 胡海涛, 郭爱敏. 双层硼烯纳米带的量子输运研究.  , doi: 10.7498/aps.71.20221304
    [10] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应.  , doi: 10.7498/aps.68.20191072
    [11] 吴歆宇, 韩伟华, 杨富华. 硅纳米结构晶体管中与杂质量子点相关的量子输运.  , doi: 10.7498/aps.68.20190095
    [12] 闫瑞, 吴泽文, 谢稳泽, 李丹, 王音. 导线非共线的分子器件输运性质的第一性原理研究.  , doi: 10.7498/aps.67.20172221
    [13] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落.  , doi: 10.7498/aps.64.097202
    [14] 游波, 岑理相. 非马尔科夫耗散系统长时演化下的极限环振荡现象.  , doi: 10.7498/aps.64.210302
    [15] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩.  , doi: 10.7498/aps.63.170302
    [16] 孙伟峰. (InAs)1/(GaSb)1超晶格原子链的第一原理研究.  , doi: 10.7498/aps.61.117104
    [17] 张彩霞, 郭虹, 杨致, 骆游桦. 三明治结构Tan(B3N3H6)n+1 团簇的磁性和量子输运性质.  , doi: 10.7498/aps.61.193601
    [18] 付邦, 邓文基. 任意正多边形量子环自旋输运的普遍解.  , doi: 10.7498/aps.59.2739
    [19] 李鹏, 邓文基. 正多边形量子环自旋输运的严格解.  , doi: 10.7498/aps.58.2713
    [20] 尹永琦, 李华, 马佳宁, 贺泽龙, 王选章. 多端耦合量子点分子桥的量子输运特性研究.  , doi: 10.7498/aps.58.4162
计量
  • 文章访问数:  192
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-05

/

返回文章
返回
Baidu
map