Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum heat transport in nonequilibrium anisotropic Dicke model

KONG Junran MAO Mang LIU Huan WANG Chen

Citation:

Quantum heat transport in nonequilibrium anisotropic Dicke model

KONG Junran, MAO Mang, LIU Huan, WANG Chen
cstr: 32037.14.aps.74.20251007
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Nonequilibrium heat transport and quantum thermodynamics in quantum light-matter interacting systems have received increasing attention. Consequently, quantum thermal devices, such as heat valve and head diode, have been realized. Recently, it has been discovered that the anisotropic light-matter interactions can greatly modify the eigenvalues and corresponding eigenvectors of hybrid quantum systems, leading to nontrivial quantum phase transitions, quantum metrology, and nonclassicality of photons. To explore the influences of anisotropic light-matter interactions on quantum transport, we investigate heat flow in the nonequilibrium anisotropic Dicke model. In this model, an ensemble of qubits collectively interacts with an anisotropic photon field. Moreover, each component interacts with bosonic thermal reservoirs. The quantum dressed master equation (DME) is included to properly study dissipative dynamics of the anisotropic Dicke model. Within the eigenbasis of the reduced anisotropic Dicke system, the strong qubit-photon couplings can be properly handled. Our results demonstrate that anisotropic qubit-photon interactions are crucial for modulating steady-state heat flow. In particular, it is found that under strong coupling the heat flow is dramatically suppressed by a large anisotropic qubit-photon factor. While under moderate coupling, the anisotropic qubit-photon interactions enhance the heat flow. Moreover, the increase in the number of qubits amplifies the flow characteristics, with the peaks increasing and the valleys decreasing. Besides, we derive two analytical expressions of heat flows in the thermodynamic limit approximation with limiting anisotropic factors. These heat currents exhibit the cotunneling heat transport pictures. They also serve as the upper boundaries for the heat flows in the anisotropic Dicke model with finite qubit numbers. We also analyze the thermal rectification effect in the anisotropic Dicke model. It is found that a large temperature bias, a large anisotropic qubit-photon factor, and nonweak qubit-photon coupling are helpful in achieving the giant thermal rectification factor. We hope that these results can deepen the understanding of quantum heat transport in the anisotropic quantum light-matter interacting systems.
      Corresponding author: WANG Chen, wangchen@zjnu.cn
    • Funds: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ25A050001).
    [1]

    Cohen-Tannoudji C, Dupont-Roc J, Grynberg G 1998 Atom-Photon Interactions: Basic Processes and Applications (New Jersey: Wiley-VCH) pp15–19

    [2]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp193–219

    [3]

    Haroche S, Brune M, Raimond J M 2020 Nat. Phys. 16 243Google Scholar

    [4]

    Kurizki G, Bertet P, Kubo Y, Molmer K, Petrosyan D, Rabl P, Schmiedmayer J 2015 PNAS 112 3866Google Scholar

    [5]

    Gonzalez-Tudela A, Reiserer A, Garcia-Ripoll J J, Garcia-Vidal F J 2024 Nat. Rev. Phys. 6 166Google Scholar

    [6]

    Ronzani A, Karimi B, Senior J, Chang Y C, Peltonen J T, Chen C D, Pekola J P 2018 Nat. Phys. 14 991Google Scholar

    [7]

    Pekola J P, Karimi B 2021 Rev. Mod. Phys. 93 041001Google Scholar

    [8]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89Google Scholar

    [9]

    Greentree A D, Koch J, Larson J 2013 J. Phys. B 46 220201Google Scholar

    [10]

    Blais A, Girvin S M, Oliver W D 2020 Nat. Phys. 16 247Google Scholar

    [11]

    Blais A, Grimsmo A L, Girvin S M, Wallraff A 2021 Rev. Mod. Phys. 93 025005Google Scholar

    [12]

    Petersson K D, McFaul L W, Schroer M D, Jung M, Taylor J M, Houck A A, Petta J R 2012 Nature 490 380Google Scholar

    [13]

    Lin T, Li H O, Cao G, Guo G P 2023 Chin. Phys. B 32 070307Google Scholar

    [14]

    Jaako T, Garcia-Ripoll J J, Rabl P 2020 Adv. Quantum Technol. 3 1900125Google Scholar

    [15]

    Cai M L, Liu Z D, Zhao W D, Wu Y K, Mei Q X, Jiang Y, He L, Zhang X, Zhou Z C, Duan L M 2021 Nat. Commun. 12 1126Google Scholar

    [16]

    Rabi I I 1936 Phys. Rev. 49 324Google Scholar

    [17]

    Rabi I I 1937 Phys. Rev. 51 652Google Scholar

    [18]

    Braak D 2011 Phys. Rev. Lett. 107 100401Google Scholar

    [19]

    Braak D, Chen Q H, Batchelor M T, Solano E 2016 J. Phys. A 49 300301Google Scholar

    [20]

    Xie Q T, Cui S, Cao J P, Amico L, Fan H 2014 Phys. Rev. X 4 021046Google Scholar

    [21]

    Lyu G T, Kottmann K, Plenio M B, Myung-Joong H 2024 Phys. Rev. Res. 6 033075Google Scholar

    [22]

    Lu J H, Ning W, Zhu X, Wu F, Shen L T, Yang Z B, Zheng S B 2022 Phys. Rev. A 106 062616Google Scholar

    [23]

    Zhu X, Lu J H, Ning W, Wu F, Shen L T, Yang Z B, Zheng S B 2023 Sci. China Phys. Mech. Astron. 66 250313Google Scholar

    [24]

    Chen Z H, Che H X, Chen Z K, Wang C, Ren J 2022 Phys. Rev. Res. 4 013152Google Scholar

    [25]

    Ye T, Wang C, Chen Q H 2023 Physica A 609 128364Google Scholar

    [26]

    Ye T, Wang C, Chen Q H 2024 Opt. Express 32 33483Google Scholar

    [27]

    Zhang Y Y, Chen X Y 2017 Phys. Rev. A 96 063821Google Scholar

    [28]

    Dicke R H 1954 Phys. Rev. 93 99Google Scholar

    [29]

    Kirton P, Roses M M, Keeling J, Dalla Torre E G 2019 Adv. Quantum Technol. 2 1970013Google Scholar

    [30]

    Emary C, Brandes T 2003 Phys. Rev. Lett. 90 044101Google Scholar

    [31]

    Lambert N, Emary C, Brandes T 2004 Phys. Rev. Lett. 92 073602Google Scholar

    [32]

    俞立先, 梁奇锋, 汪丽蓉, 朱士群 2014 63 134204Google Scholar

    Yu L X, Liang Q F, Wang L R, Zhu S Q 2014 Acta Phys. Sin. 63 134204Google Scholar

    [33]

    赵秀琴, 张文慧, 王红梅 2024 73 160302Google Scholar

    Zhao X Q, Zhang W H, Wang H M 2024 Acta Phys. Sin. 73 160302Google Scholar

    [34]

    Gyhm J Y, Safranek D, Rosa D 2022 Phys. Rev. Lett. 128 140501Google Scholar

    [35]

    Dou F Q, Lu Y Q, Wang Y J, Sun J A 2022 Phys. Rev. A 106 032212Google Scholar

    [36]

    黄彬源, 贺志, 陈雨 2023 72 180301Google Scholar

    Huang B Y, He Z, Chen Y 2023 Acta Phys. Sin. 72 180301Google Scholar

    [37]

    Seidov S S, Mukhin S I 2024 Phys. Rev. A 109 022210Google Scholar

    [38]

    Weiss U 1999 Quantum Dissipative Systems (Singapore: World Scientific) pp250, 251

    [39]

    Chiacchio1 E I R, Nunnenkamp A, Brunelli M 2023 Phys. Rev. Lett. 131 113602Google Scholar

    [40]

    Mivehvar F 2024 Phys. Rev. Lett. 132 073602Google Scholar

    [41]

    Vivek G, Mondal D, Chakraborty S, Sinha S 2025 Phys. Rev. Lett. 134 113404Google Scholar

    [42]

    Gong Z P, Hamazaki R, Ueda M 2018 Phys. Rev. Lett. 120 040404Google Scholar

    [43]

    Jager S B, Giesen J M, Schneider I, Eggert S 2024 Phys. Rev. A 110 L010202Google Scholar

    [44]

    Kirton P, Keeling J 2018 New J. Phys. 20 015009Google Scholar

    [45]

    Strashko A, Kirton P, Keeling J 2018 Phys. Rev. Lett. 121 193601Google Scholar

    [46]

    Das P, Bhakuni D S, Sharma A 2023 Phys. Rev. A 107 043706Google Scholar

    [47]

    Chen X Y, Zhang Y Y, Chen Q H, Lin H Q 2024 Phys. Rev. A 110 063722Google Scholar

    [48]

    Buijsman1 W, Gritsev V, Sprik R 2017 Phys. Rev. Lett. 118 080601Google Scholar

    [49]

    Zhu X, Lu J H, Ning W, Shen L T, Wu F, Yang Z B 2024 Phys. Rev. A 109 052621Google Scholar

    [50]

    Senior J, Gubaydullin A, Karimi B, Peltonen J T, Ankerhold J, Pekola J P 2020 Commun. Phys. 3 40Google Scholar

    [51]

    Gubaydullin A, Thomas G, Golubev D S, Lvov D, Peltonen J T, Pekola J P 2022 Nat. Commun. 13 1552Google Scholar

    [52]

    Liu Y Q, Yang Y J, Yu C S, 2023 Phys. Rev. E 107 044121Google Scholar

    [53]

    Zhao X D, Xing Y, Cao J, Liu S T, Cui W X, Wang H F, 2023 npj Quantum Inf. 9 59Google Scholar

    [54]

    Lu J C, Wang R Q, Ren J, Kulkarni M, Jiang J H 2019 Phys. Rev. B 99 035129Google Scholar

    [55]

    Majland M, Christensen K S, Zinner N T 2020 Phys. Rev. B 101 184510Google Scholar

    [56]

    Wang C, Chen H, Liao J Q 2021 Phys. Rev. A 104 033701Google Scholar

    [57]

    Andolina G M, Erdman P A, Noe F, Pekola J, Schiro M 2024 Phys. Rev. Res. 6 043128Google Scholar

    [58]

    Beaudoin F, Gambetta J M, Blais A 2011 Phys. Rev. A 84 043832Google Scholar

    [59]

    Altintas F, Eryigit R 2013 Phys. Rev. A 87 022124Google Scholar

    [60]

    Le Boite A 2020 Adv. Quantum Technol. 3 1900140Google Scholar

    [61]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203Google Scholar

    [62]

    Li N B, Ren J, Wang L, Zhang G, Hanggi P, Li B 2012 Rev. Mod. Phys. 84 1045Google Scholar

    [63]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301Google Scholar

    [64]

    Zhang L F, Yan Y H, Wu C Q, Wang J S, Li B W 2009 Phys. Rev. B 80 172301Google Scholar

  • 图 1  (a), (b)各向异性Dicke模型和耦合谐振子模型的示意图, 其中光子和量子比特分别与各自热库相互作用; (c)方程(3)处的耦合振子哈密顿量在参数$ \omega_{\mathrm{a}}=1 $, $ \varepsilon=0.8\omega_{\mathrm{a}} $下的两个本征模; (d)在本征基矢下耦合振子系统与热库之间的非相干能量交换过程

    Figure 1.  A schematic description of (a) anisotropic Dicke model and (b) two-coupled-oscillator model, of which these quantum components, i.e., qubits and photons, individually interact with bosonic thermal reservoirs. (c) Two eigenmodes of two-coupled-oscillator Hamiltonian at Eq. (3) with $ \omega_{\mathrm{a}}=1 $, $ \varepsilon=0.8\omega_{\mathrm{a}} $. (d) Incoherent energy exchange processes between the two-coupled-oscillator system in the eigen-basis and the thermal reservoirs.

    图 2  光子-量子比特耦合强度λ和各向异性系数γ对热流$ J_{\mathrm{q}} $的影响 (a) 单量子比特极限, 即$N_{\mathrm{s}}=1 $; (b) $ N_{\mathrm{s}}=2 $; (c) $ N_{\mathrm{s}}=4 $; (d) $ N_{\mathrm{s}}=6 $. 图中的红色线条代表$ \gamma=0 $与$ \gamma=1 $下的热流行为; 其他系统参数为$ \omega_{\mathrm{a}}=1 $, $ \varepsilon=0.8\omega_{\mathrm{a}} $, $ \omega_{\mathrm{c}}= 20\omega_{\mathrm{a }}$, $ \alpha_{\mathrm{r}}=\alpha_{\mathrm{q}}= $$ 0.001\omega_{\mathrm{a}} $, $ T_{\mathrm{r}}=1.2\omega_{\mathrm{a }}$和$ T_{\mathrm{q}}=0.6\omega_{\mathrm{a}} $

    Figure 2.  Influences of qubit-photon coupling strength λ and anisotropic factor γ on steady state heat flow $ J_{\mathrm{q}} $ in (a) $ N_{\mathrm{s}}=1 $, and finite numbers of qubits (b) $ N_{\mathrm{s}}=2 $, (c) $ N_{\mathrm{s}}=4 $, and (d) $ N_{\mathrm{s}}=6 $. The redlines denote heat flows at $ \gamma=0 $ and $ \gamma=1 $ limiting cases. System parameters are given by $ \omega_{\mathrm{a}}=1 $, $ \varepsilon=0.8\omega_{\mathrm{a}} $, $ \omega_{\mathrm{c}}=20\omega_{\mathrm{a}} $, $ \alpha_{\mathrm{r}}=\alpha_{\mathrm{q}}=0.001\omega_{\mathrm{a }}$, $ T_{\mathrm{r}}=1.2\omega_{\mathrm{a}} $, and $ T_{\mathrm{q}}=0.6\omega_{\mathrm{a}} $.

    图 3  (a)非平衡耦合谐振子中热流在各向异性系数下的行为; (b)各向异性系数在$ \lambda/\omega_{\mathrm{a}}=0.4 $时对热流的影响. 其他系统参数为$ \omega_{\mathrm{a}}=1 $, $ \varepsilon=0.8\omega_{\mathrm{a}} $, $ \omega_{\mathrm{c}}=20\omega_{\mathrm{a }}$, $ \alpha_{\mathrm{r}}=\alpha_{\mathrm{q}}=0.001\omega_{\mathrm{a}} $, $ T_{\mathrm{r}}=1.2\omega_{\mathrm{a}} $和$ T_{\mathrm{q}}=0.6\omega_{\mathrm{a }}$

    Figure 3.  (a) Steady-state heat flow of the nonequilibrium two-coupled-oscillator model by tuning the qubit-photon interaction strength with various anisotropic factors; (b) the influence of anisotropic factor on the heat flow at $ \lambda/\omega_{\rm a}=0.4 $. Other system parameters are given by $ \omega_{\mathrm{a}}=1 $, $ \varepsilon=0.8\omega_{\mathrm{a}} $, $ \omega_{\mathrm{c}}=20\omega_{\mathrm{a }}$, $ \alpha_{\mathrm{r}}=\alpha_{\mathrm{q}}=0.001\omega_{\mathrm{a}} $, $ T_{\mathrm{r}}=1.2\omega_{\mathrm{a}} $, and $ T_{\mathrm{q}}=0.6\omega_{\mathrm{a }}$.

    图 4  $ N_{\mathrm{s}}=2 $时, (a) $ \gamma=0.2 $, (b) $ \gamma=0.5 $和(c) $ \gamma=0.8 $下量子比特-光子耦合强度λ和温度偏差$ \varDelta{T} $对热整流因子$ {\cal{R}} $的影响. $ T_{\mathrm{r}}=T_0+{\varDelta}T/2 $, $ T_{\mathrm{q}}=T_0-{\varDelta}T/2 $且$ T_0=\omega_{\mathrm{a}} $. 在(d) $ N_{\mathrm{s}}=2 $, (e) $ N_{\mathrm{s}}=4 $和(f)$ N_{\mathrm{s}}=6 $下$ {\cal{R}} $的最大值与λγ的关系. 其他系统参数为$ \omega_{\mathrm{a}}=1 $, $ \varepsilon=0.8\omega_{\mathrm{a }}$, $ \omega_{\mathrm{c}}=20\omega_{\mathrm{a}} $和$ \alpha_{\mathrm{r}}=\alpha_{\mathrm{q}}=0.001\omega_{\mathrm{a}} $

    Figure 4.  Thermal rectification factor $ {\cal{R}} $ by tuning qubit-photon coupling strength λ and temperature bias $ \varDelta{T} $ ($ T_{\mathrm{r}}=T_0+{\varDelta}T/2 $, $ T_{\mathrm{q}}=T_0-{\varDelta}T/2 $, and $ T_0=\omega_{\mathrm{a}} $) with $ N_{\mathrm{s}}=2 $ at (a) $ \gamma=0.2 $, (b) $ \gamma=0.5 $, and (c) $ \gamma=0.8 $. Maximal value of $ {\cal{R}} $ by searching over the temperature bias as a function of λ and γ with (d) $ N_{\mathrm{s}}=2 $, (e) $ N_{\mathrm{s}}=4 $, and (f) $ N_{\mathrm{s}}=6 $. Other system parameters are given by $ \omega_{\mathrm{a}}=1 $, $ \varepsilon=0.8\omega_{\mathrm{a}} $, $ \omega_{\mathrm{c}}=20\omega_{\mathrm{a}} $, and $ \alpha_{\mathrm{r}}=\alpha_{\mathrm{q}}=0.001\omega_{\mathrm a} $.

    Baidu
  • [1]

    Cohen-Tannoudji C, Dupont-Roc J, Grynberg G 1998 Atom-Photon Interactions: Basic Processes and Applications (New Jersey: Wiley-VCH) pp15–19

    [2]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp193–219

    [3]

    Haroche S, Brune M, Raimond J M 2020 Nat. Phys. 16 243Google Scholar

    [4]

    Kurizki G, Bertet P, Kubo Y, Molmer K, Petrosyan D, Rabl P, Schmiedmayer J 2015 PNAS 112 3866Google Scholar

    [5]

    Gonzalez-Tudela A, Reiserer A, Garcia-Ripoll J J, Garcia-Vidal F J 2024 Nat. Rev. Phys. 6 166Google Scholar

    [6]

    Ronzani A, Karimi B, Senior J, Chang Y C, Peltonen J T, Chen C D, Pekola J P 2018 Nat. Phys. 14 991Google Scholar

    [7]

    Pekola J P, Karimi B 2021 Rev. Mod. Phys. 93 041001Google Scholar

    [8]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89Google Scholar

    [9]

    Greentree A D, Koch J, Larson J 2013 J. Phys. B 46 220201Google Scholar

    [10]

    Blais A, Girvin S M, Oliver W D 2020 Nat. Phys. 16 247Google Scholar

    [11]

    Blais A, Grimsmo A L, Girvin S M, Wallraff A 2021 Rev. Mod. Phys. 93 025005Google Scholar

    [12]

    Petersson K D, McFaul L W, Schroer M D, Jung M, Taylor J M, Houck A A, Petta J R 2012 Nature 490 380Google Scholar

    [13]

    Lin T, Li H O, Cao G, Guo G P 2023 Chin. Phys. B 32 070307Google Scholar

    [14]

    Jaako T, Garcia-Ripoll J J, Rabl P 2020 Adv. Quantum Technol. 3 1900125Google Scholar

    [15]

    Cai M L, Liu Z D, Zhao W D, Wu Y K, Mei Q X, Jiang Y, He L, Zhang X, Zhou Z C, Duan L M 2021 Nat. Commun. 12 1126Google Scholar

    [16]

    Rabi I I 1936 Phys. Rev. 49 324Google Scholar

    [17]

    Rabi I I 1937 Phys. Rev. 51 652Google Scholar

    [18]

    Braak D 2011 Phys. Rev. Lett. 107 100401Google Scholar

    [19]

    Braak D, Chen Q H, Batchelor M T, Solano E 2016 J. Phys. A 49 300301Google Scholar

    [20]

    Xie Q T, Cui S, Cao J P, Amico L, Fan H 2014 Phys. Rev. X 4 021046Google Scholar

    [21]

    Lyu G T, Kottmann K, Plenio M B, Myung-Joong H 2024 Phys. Rev. Res. 6 033075Google Scholar

    [22]

    Lu J H, Ning W, Zhu X, Wu F, Shen L T, Yang Z B, Zheng S B 2022 Phys. Rev. A 106 062616Google Scholar

    [23]

    Zhu X, Lu J H, Ning W, Wu F, Shen L T, Yang Z B, Zheng S B 2023 Sci. China Phys. Mech. Astron. 66 250313Google Scholar

    [24]

    Chen Z H, Che H X, Chen Z K, Wang C, Ren J 2022 Phys. Rev. Res. 4 013152Google Scholar

    [25]

    Ye T, Wang C, Chen Q H 2023 Physica A 609 128364Google Scholar

    [26]

    Ye T, Wang C, Chen Q H 2024 Opt. Express 32 33483Google Scholar

    [27]

    Zhang Y Y, Chen X Y 2017 Phys. Rev. A 96 063821Google Scholar

    [28]

    Dicke R H 1954 Phys. Rev. 93 99Google Scholar

    [29]

    Kirton P, Roses M M, Keeling J, Dalla Torre E G 2019 Adv. Quantum Technol. 2 1970013Google Scholar

    [30]

    Emary C, Brandes T 2003 Phys. Rev. Lett. 90 044101Google Scholar

    [31]

    Lambert N, Emary C, Brandes T 2004 Phys. Rev. Lett. 92 073602Google Scholar

    [32]

    俞立先, 梁奇锋, 汪丽蓉, 朱士群 2014 63 134204Google Scholar

    Yu L X, Liang Q F, Wang L R, Zhu S Q 2014 Acta Phys. Sin. 63 134204Google Scholar

    [33]

    赵秀琴, 张文慧, 王红梅 2024 73 160302Google Scholar

    Zhao X Q, Zhang W H, Wang H M 2024 Acta Phys. Sin. 73 160302Google Scholar

    [34]

    Gyhm J Y, Safranek D, Rosa D 2022 Phys. Rev. Lett. 128 140501Google Scholar

    [35]

    Dou F Q, Lu Y Q, Wang Y J, Sun J A 2022 Phys. Rev. A 106 032212Google Scholar

    [36]

    黄彬源, 贺志, 陈雨 2023 72 180301Google Scholar

    Huang B Y, He Z, Chen Y 2023 Acta Phys. Sin. 72 180301Google Scholar

    [37]

    Seidov S S, Mukhin S I 2024 Phys. Rev. A 109 022210Google Scholar

    [38]

    Weiss U 1999 Quantum Dissipative Systems (Singapore: World Scientific) pp250, 251

    [39]

    Chiacchio1 E I R, Nunnenkamp A, Brunelli M 2023 Phys. Rev. Lett. 131 113602Google Scholar

    [40]

    Mivehvar F 2024 Phys. Rev. Lett. 132 073602Google Scholar

    [41]

    Vivek G, Mondal D, Chakraborty S, Sinha S 2025 Phys. Rev. Lett. 134 113404Google Scholar

    [42]

    Gong Z P, Hamazaki R, Ueda M 2018 Phys. Rev. Lett. 120 040404Google Scholar

    [43]

    Jager S B, Giesen J M, Schneider I, Eggert S 2024 Phys. Rev. A 110 L010202Google Scholar

    [44]

    Kirton P, Keeling J 2018 New J. Phys. 20 015009Google Scholar

    [45]

    Strashko A, Kirton P, Keeling J 2018 Phys. Rev. Lett. 121 193601Google Scholar

    [46]

    Das P, Bhakuni D S, Sharma A 2023 Phys. Rev. A 107 043706Google Scholar

    [47]

    Chen X Y, Zhang Y Y, Chen Q H, Lin H Q 2024 Phys. Rev. A 110 063722Google Scholar

    [48]

    Buijsman1 W, Gritsev V, Sprik R 2017 Phys. Rev. Lett. 118 080601Google Scholar

    [49]

    Zhu X, Lu J H, Ning W, Shen L T, Wu F, Yang Z B 2024 Phys. Rev. A 109 052621Google Scholar

    [50]

    Senior J, Gubaydullin A, Karimi B, Peltonen J T, Ankerhold J, Pekola J P 2020 Commun. Phys. 3 40Google Scholar

    [51]

    Gubaydullin A, Thomas G, Golubev D S, Lvov D, Peltonen J T, Pekola J P 2022 Nat. Commun. 13 1552Google Scholar

    [52]

    Liu Y Q, Yang Y J, Yu C S, 2023 Phys. Rev. E 107 044121Google Scholar

    [53]

    Zhao X D, Xing Y, Cao J, Liu S T, Cui W X, Wang H F, 2023 npj Quantum Inf. 9 59Google Scholar

    [54]

    Lu J C, Wang R Q, Ren J, Kulkarni M, Jiang J H 2019 Phys. Rev. B 99 035129Google Scholar

    [55]

    Majland M, Christensen K S, Zinner N T 2020 Phys. Rev. B 101 184510Google Scholar

    [56]

    Wang C, Chen H, Liao J Q 2021 Phys. Rev. A 104 033701Google Scholar

    [57]

    Andolina G M, Erdman P A, Noe F, Pekola J, Schiro M 2024 Phys. Rev. Res. 6 043128Google Scholar

    [58]

    Beaudoin F, Gambetta J M, Blais A 2011 Phys. Rev. A 84 043832Google Scholar

    [59]

    Altintas F, Eryigit R 2013 Phys. Rev. A 87 022124Google Scholar

    [60]

    Le Boite A 2020 Adv. Quantum Technol. 3 1900140Google Scholar

    [61]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203Google Scholar

    [62]

    Li N B, Ren J, Wang L, Zhang G, Hanggi P, Li B 2012 Rev. Mod. Phys. 84 1045Google Scholar

    [63]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301Google Scholar

    [64]

    Zhang L F, Yan Y H, Wu C Q, Wang J S, Li B W 2009 Phys. Rev. B 80 172301Google Scholar

  • [1] WANG Yu, LIANG Yulin, XING Yanxia. Topological Anderson insulator phase in graphene. Acta Physica Sinica, 2025, 74(4): 047301. doi: 10.7498/aps.74.20241031
    [2] ZHU Xiaolong, LIU Yulin. Transport properties of multiferroic tunnel junctions based on sliding ferroelectric VTe2. Acta Physica Sinica, 2025, 74(20): 207501. doi: 10.7498/aps.74.20250734
    [3] DENG Xiaosong, ZHANG Zhiyong, KANG Ning. Research on hybrid superconducting devices and quantum transport based on one-dimensional electronic systems. Acta Physica Sinica, 2025, 74(7): 077401. doi: 10.7498/aps.74.20241672
    [4] Gao Jian-Hua, Sheng Xin-Li, Wang Qun, Zhuang Peng-Fei. Relativistic spin transport theory for spin-1/2 fermions. Acta Physica Sinica, 2023, 72(11): 112501. doi: 10.7498/aps.72.20222470
    [5] Ding Jin-Ting, Hu Pei-Jia, Guo Ai-Min. Electron transport in graphene nanoribbons with line defects. Acta Physica Sinica, 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [6] Liu Tian, Li Zong-Liang, Zhang Yan-Hui, Lan Kang. Study of quantum speed limit of of transport process of single quantum dot system in dissipative environment. Acta Physica Sinica, 2023, 72(4): 047301. doi: 10.7498/aps.72.20222159
    [7] Pei Si-Hui, Song Zi-Xuan, Lin Xing, Fang Wei. Interaction between light and single quantum-emitter in open Fabry-Perot microcavity. Acta Physica Sinica, 2022, 71(6): 060201. doi: 10.7498/aps.71.20211970
    [8] Fang Jing-Yun, Sun Qing-Feng. Thermal dissipation of electric transport in graphene p-n junctions in magnetic field. Acta Physica Sinica, 2022, 71(12): 127203. doi: 10.7498/aps.71.20220029
    [9] Hu Hai-Tao, Guo Ai-Min. Quantum transport properties of bilayer borophene nanoribbons. Acta Physica Sinica, 2022, 71(22): 227301. doi: 10.7498/aps.71.20221304
    [10] Yan Jie, Wei Miao-Miao, Xing Yan-Xia. Dephasing effect of quantum spin topological states in HgTe/CdTe quantum well. Acta Physica Sinica, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [11] Wu Xin-Yu, Han Wei-Hua, Yang Fu-Hua. Quantum transport relating to impurity quantum dots in silicon nanostructure transistor. Acta Physica Sinica, 2019, 68(8): 087301. doi: 10.7498/aps.68.20190095
    [12] Yan Rui, Wu Ze-Wen, Xie Wen-Ze, Li Dan, Wang Yin. First-principles study on transport property of molecular} device with non-collinear electrodes. Acta Physica Sinica, 2018, 67(9): 097301. doi: 10.7498/aps.67.20172221
    [13] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [14] You Bo, Cen Li-Xiang. Phenomena of limit cycle oscillations for non-Markovian dissipative systems undergoing long-time evolution. Acta Physica Sinica, 2015, 64(21): 210302. doi: 10.7498/aps.64.210302
    [15] Chang Feng, Wang Xiao-Qian, Gai Yong-Jie, Yan Dong, Song Li-Jun. Quantum Fisher information and spin squeezing in the interaction system of light and matter. Acta Physica Sinica, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [16] Sun Wei-Feng. First-principles study of (InAs)1/(GaSb)1 superlattice atomic chains. Acta Physica Sinica, 2012, 61(11): 117104. doi: 10.7498/aps.61.117104
    [17] Zhang Cai-Xia, Guo Hong, Yang Zhi, Luo You-Hua. The magnetic and quantum transport properties of sandwich-structured Tan(B3N3H6)n+1 clusters. Acta Physica Sinica, 2012, 61(19): 193601. doi: 10.7498/aps.61.193601
    [18] Fu Bang, Deng Wen-Ji. General solutions to spin transportation of electrons through equilateral polygon quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, 2010, 59(4): 2739-2745. doi: 10.7498/aps.59.2739
    [19] Li Peng, Deng Wen-Ji. Exact solutions to the transportation of electrons through equilateral polygonal quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, 2009, 58(4): 2713-2719. doi: 10.7498/aps.58.2713
    [20] Yin Yong-Qi, Li Hua, Ma Jia-Ning, He Ze-Long, Wang Xuan-Zhang. Quantum transport of multi-terminal coupled-quantum-dot-molecular bridge. Acta Physica Sinica, 2009, 58(6): 4162-4167. doi: 10.7498/aps.58.4162
Metrics
  • Abstract views:  722
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Received Date:  28 July 2025
  • Accepted Date:  14 August 2025
  • Available Online:  05 September 2025
  • Published Online:  05 November 2025
  • /

    返回文章
    返回
    Baidu
    map