Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of oxygen adsorption on spin transport properties of single anthracene molecular devices

Cui Xing-Qian Liu Qian Fan Zhi-Qiang Zhang Zhen-Hua

Citation:

Effects of oxygen adsorption on spin transport properties of single anthracene molecular devices

Cui Xing-Qian, Liu Qian, Fan Zhi-Qiang, Zhang Zhen-Hua
cstr: 32037.14.aps.69.20201028
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • With the miniaturization of molecular devices, high-performance nano devices can be fabricated by controlling the spin states of electrons. Because of their advantages such as low energy consumption, easy integration and long decoherence time, more and more attention has been paid to them. So far, the spin filtration efficiency of molecular device with graphene electrode is not very stable, which will decrease with the increase of voltage, and thus affecting its applications. Therefore, how to enhance the spin filtration efficiency of molecular device with graphene electrode becomes a scientific research problem. Using the first principle calculations based on density functional theory combined with non-equilibrium Green’s function, the physical mechanism of regulating the spin polarization transport properties of single anthracene molecule device with graphene nanoribon as electrode is investigated by molecular oxygen adsorption. In order to explore the effect of the change of the connection mode between single anthracene molecule and zigzag graphene nanoribbon electrode on the spin transport properties of the device, we establish two models. The first model is the model M1, which is the single anthracene molecule longitudinal connection, and the second model is the model M2, which is the single anthracene molecule lateral connection. The adsorption model of single oxygen molecule is denoted by M1O and M2O respectively. The results show that when none of oxygen molecules is adsorbed, the spin filtering effect of single anthracene molecule connecting graphene nanoribbons laterally (M2) is better than that of single anthracene molecule connecting graphene nanoribbons longitudinally (M1). After oxygen molecules are adsorbed on single anthracene molecule, the enhanced localized degree of transport eigenstate will make the spin current of the two kinds of devices decrease by nearly two orders of magnitude. However, molecular oxygen adsorption significantly improves the spin filtering efficiency of the device and enhances the application performance of the device. The maximal spin filtering efficiency of single anthracene molecule connecting graphene nanoribbons longitudinal (M1O) can be increased from 72% to 80%. More importantly, the device with single anthracene molecule connecting graphene nanoribbons laterally (M2) maintains nearly 100% spin filtering efficiency in a bias range from –0.5 V to +0.5 V. These results provide more theoretical guidance for practically fabricating spin molecular devices and regulating their spin transport properties.
      Corresponding author: Fan Zhi-Qiang, zqfan@csust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674039, 61701431), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2020JJ4597, 2020JJ4625), the Science Foundationcd of Education Bureau of Hunan Province, China (Grant No. 18B157), and the Postgraduate Scientific Research Innovation Program of Hunan Province, China (Grant No. CX2019703)
    [1]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [2]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J 1997 Science 278 252Google Scholar

    [3]

    Fan Z Q, Chen K Q 2010 Physica E 42 1492Google Scholar

    [4]

    范志强, 谢芳 2012 61 077303Google Scholar

    Fan Z Q, Xie F 2012 Acta Phys. Sin. 61 077303Google Scholar

    [5]

    Fan Z Q, Chen K Q, Wan Q, Zhang Y 2010 J. Appl. Phys. 107 113713Google Scholar

    [6]

    Wan H Q, Xu Y, Zhou G H 2012 J. Chem. Phys. 136 184704Google Scholar

    [7]

    Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765Google Scholar

    [8]

    Fan Z Q, Sun W Y, Jiang X W, Luo J W, Li S S 2017 Org. Electron. 44 20Google Scholar

    [9]

    Yi X Y, Long M Q, Liu A H, Li M J, Xu H 2018 J. Appl. Phys. 123 204303Google Scholar

    [10]

    Fan Z Q, Zhang Z H, Xie F, Deng X Q, Tang G P, Yang C H, Chen K Q 2015 Org. Electron. 18 101Google Scholar

    [11]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [12]

    郭超, 张振华, 潘金波, 张俊俊 2011 60 117303Google Scholar

    Guo C, Zhang Z H, Pan J B, Zhang J J 2011 Acta Phys. Sin. 60 117303Google Scholar

    [13]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Chen K Q 2012 Org. Electron. 13 2954Google Scholar

    [14]

    Wu J B, Lin M L, Cong X, Liu H N, Tan P H 2018 Chem. Soc. Rev. 47 1822Google Scholar

    [15]

    Zhu C, Wei D H, Wu Y L, Zhang Z, Zhang G H, Duan J F, Li L J, Zhu H L, Zhu Z Y, Chen Z Y 2019 J. Alloys Compd. 778 731Google Scholar

    [16]

    Yankowitz M, Chen S W, Polshyn H, Zhang Y X, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [17]

    Wu N N, Xu D M, Wang Z, Wang F L, Liu J R, Liu W, Shao Q, Liu H, Gao Q, Guo Z H 2019 Carbon 145 433Google Scholar

    [18]

    Cao Y, Dong S H, Liu S, He L, Gan L, Yu X M, Steigerwald M L, Wu X S, Liu Z F, Guo X F 2012 Angew. Chem. Int. Ed. 51 12228Google Scholar

    [19]

    左敏, 廖文虎, 吴丹, 林丽娥 2019 68 237302Google Scholar

    Zuo M, Liao W H, Wu D, Lin L E 2019 Acta Phys. Sin. 68 237302Google Scholar

    [20]

    Xie F, Fan Z Q, Liu K, Wang H Y, Yu J H, Chen K Q 2015 Org. Electron. 27 41Google Scholar

    [21]

    俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 66 098501Google Scholar

    Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501Google Scholar

    [22]

    Zeng J, Chen K Q, Tong Y X 2018 Carbon 127 611Google Scholar

    [23]

    Wan H, Zhou B H, Chen X, Sun C Q, Zhou G H 2012 J. Phys. Chem. C 116 2570Google Scholar

    [24]

    Ozaki T, Nishio K, Weng H M, Kino H 2010 Phys. Rev. B 81 075422Google Scholar

    [25]

    An Y P, Zhang M J, Wu D P, Wang T X, Jiao Z Y, Xia C X, Fu Z M, Wang K 2016 Phys. Chem. Chem. Phys. 18 27976Google Scholar

    [26]

    Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F 2016 Science 352 1443Google Scholar

    [27]

    Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar

    [28]

    Zhu Z, Zhang Z H, Wang D, Deng X Q, Fan Z Q, Tang G P 2015 J. Mater. Chem. C 3 9657Google Scholar

    [29]

    Cao C, Long M Q, Zhang X J, Mao X C 2015 Phys. Lett. A 379 1527Google Scholar

    [30]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745Google Scholar

    [31]

    胡锐, 范志强, 张振华 2017 66 138501Google Scholar

    Hu R, Fan Z Q, Zhang Z H 2017 Acta Phys. Sin. 66 138501Google Scholar

    [32]

    Sun W Y, Cui X Q, Fan Z Q, Nie L Y, Zhang Z H 2019 J. Phys. D: Appl. Phys. 52 155102Google Scholar

    [33]

    Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808Google Scholar

    [34]

    Zhang D, Long M Q, Zhang X J, Ouyang F P, Li M J, Xu H 2015 J. Appl. Phys. 117 014311Google Scholar

    [35]

    Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748Google Scholar

    [36]

    Li X L, Wang X R, Zhang L, Lee S, Dai H J 2008 Science 319 1229Google Scholar

    [37]

    Yan S L, Long M Q, Zhang X J, Xu H 2014 Phys. Lett. A 378 960Google Scholar

    [38]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [39]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstiche B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanper A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. Condens. Matter 32 015901Google Scholar

    [40]

    Quantum ATK, version P-2013.08 https://www.synopsys.com [2013-8-1]

  • 图 1  以锯齿型石墨烯纳米带为电极的单蒽分子器件模型 (a) 模型M1; (b) 模型M2

    Figure 1.  Schematic views of the single anthracene molecular device based on nanoribbon electrode: (a) Model M1; (b) model M2.

    图 2  (a)和(c)分别表示M1和M1O的零偏压自旋输运谱; (b)和(d)分别表示M1和M1O费米能级处的自旋输运本征态

    Figure 2.  (a), (c) The zero-bias spin-resolved transmission spectra of M1 and M1O; (b), (d) the transmission eigenstate of M1 and M1O on Fermi energy.

    图 3  (a)和(c)分别表示M2和M2O的零偏压自旋输运谱; (b)和(d)分别表示M2和M2O费米能级处的自旋输运本征态

    Figure 3.  (a), (c) The zero-bias spin-resolved transmission spectra of M2 and M2O; (b), (d) the transmission eigenstate of M2 and M2O on Fermi energy.

    图 4  (a)−(d)分别表示M1, M1O, M2和M2O的自旋极化电流-电压特性

    Figure 4.  (a)−(d) The spin-resolved I-V characteristics of M1, M1O, M2 and M2O, respectively.

    图 5  (a) 器件M1和M1O的自旋过滤效率; (b)器件M2和M2O的自旋过滤效率

    Figure 5.  (a) SFE of M1 and M1O device; (b) SFE of M2 and M2O device.

    Baidu
  • [1]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [2]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J 1997 Science 278 252Google Scholar

    [3]

    Fan Z Q, Chen K Q 2010 Physica E 42 1492Google Scholar

    [4]

    范志强, 谢芳 2012 61 077303Google Scholar

    Fan Z Q, Xie F 2012 Acta Phys. Sin. 61 077303Google Scholar

    [5]

    Fan Z Q, Chen K Q, Wan Q, Zhang Y 2010 J. Appl. Phys. 107 113713Google Scholar

    [6]

    Wan H Q, Xu Y, Zhou G H 2012 J. Chem. Phys. 136 184704Google Scholar

    [7]

    Zhang Z H, Guo C, Kwong D J, Li J, Deng X Q, Fan Z Q 2013 Adv. Funct. Mater. 23 2765Google Scholar

    [8]

    Fan Z Q, Sun W Y, Jiang X W, Luo J W, Li S S 2017 Org. Electron. 44 20Google Scholar

    [9]

    Yi X Y, Long M Q, Liu A H, Li M J, Xu H 2018 J. Appl. Phys. 123 204303Google Scholar

    [10]

    Fan Z Q, Zhang Z H, Xie F, Deng X Q, Tang G P, Yang C H, Chen K Q 2015 Org. Electron. 18 101Google Scholar

    [11]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [12]

    郭超, 张振华, 潘金波, 张俊俊 2011 60 117303Google Scholar

    Guo C, Zhang Z H, Pan J B, Zhang J J 2011 Acta Phys. Sin. 60 117303Google Scholar

    [13]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Chen K Q 2012 Org. Electron. 13 2954Google Scholar

    [14]

    Wu J B, Lin M L, Cong X, Liu H N, Tan P H 2018 Chem. Soc. Rev. 47 1822Google Scholar

    [15]

    Zhu C, Wei D H, Wu Y L, Zhang Z, Zhang G H, Duan J F, Li L J, Zhu H L, Zhu Z Y, Chen Z Y 2019 J. Alloys Compd. 778 731Google Scholar

    [16]

    Yankowitz M, Chen S W, Polshyn H, Zhang Y X, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [17]

    Wu N N, Xu D M, Wang Z, Wang F L, Liu J R, Liu W, Shao Q, Liu H, Gao Q, Guo Z H 2019 Carbon 145 433Google Scholar

    [18]

    Cao Y, Dong S H, Liu S, He L, Gan L, Yu X M, Steigerwald M L, Wu X S, Liu Z F, Guo X F 2012 Angew. Chem. Int. Ed. 51 12228Google Scholar

    [19]

    左敏, 廖文虎, 吴丹, 林丽娥 2019 68 237302Google Scholar

    Zuo M, Liao W H, Wu D, Lin L E 2019 Acta Phys. Sin. 68 237302Google Scholar

    [20]

    Xie F, Fan Z Q, Liu K, Wang H Y, Yu J H, Chen K Q 2015 Org. Electron. 27 41Google Scholar

    [21]

    俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 66 098501Google Scholar

    Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501Google Scholar

    [22]

    Zeng J, Chen K Q, Tong Y X 2018 Carbon 127 611Google Scholar

    [23]

    Wan H, Zhou B H, Chen X, Sun C Q, Zhou G H 2012 J. Phys. Chem. C 116 2570Google Scholar

    [24]

    Ozaki T, Nishio K, Weng H M, Kino H 2010 Phys. Rev. B 81 075422Google Scholar

    [25]

    An Y P, Zhang M J, Wu D P, Wang T X, Jiao Z Y, Xia C X, Fu Z M, Wang K 2016 Phys. Chem. Chem. Phys. 18 27976Google Scholar

    [26]

    Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F 2016 Science 352 1443Google Scholar

    [27]

    Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar

    [28]

    Zhu Z, Zhang Z H, Wang D, Deng X Q, Fan Z Q, Tang G P 2015 J. Mater. Chem. C 3 9657Google Scholar

    [29]

    Cao C, Long M Q, Zhang X J, Mao X C 2015 Phys. Lett. A 379 1527Google Scholar

    [30]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745Google Scholar

    [31]

    胡锐, 范志强, 张振华 2017 66 138501Google Scholar

    Hu R, Fan Z Q, Zhang Z H 2017 Acta Phys. Sin. 66 138501Google Scholar

    [32]

    Sun W Y, Cui X Q, Fan Z Q, Nie L Y, Zhang Z H 2019 J. Phys. D: Appl. Phys. 52 155102Google Scholar

    [33]

    Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808Google Scholar

    [34]

    Zhang D, Long M Q, Zhang X J, Ouyang F P, Li M J, Xu H 2015 J. Appl. Phys. 117 014311Google Scholar

    [35]

    Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748Google Scholar

    [36]

    Li X L, Wang X R, Zhang L, Lee S, Dai H J 2008 Science 319 1229Google Scholar

    [37]

    Yan S L, Long M Q, Zhang X J, Xu H 2014 Phys. Lett. A 378 960Google Scholar

    [38]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [39]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstiche B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanper A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. Condens. Matter 32 015901Google Scholar

    [40]

    Quantum ATK, version P-2013.08 https://www.synopsys.com [2013-8-1]

Metrics
  • Abstract views:  8710
  • PDF Downloads:  187
  • Cited By: 0
Publishing process
  • Received Date:  30 June 2020
  • Accepted Date:  21 August 2020
  • Available Online:  07 December 2020
  • Published Online:  20 December 2020
  • /

    返回文章
    返回
    Baidu
    map