Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of 4H-SiC/Ti/TaSi2/Pt high-temperature lead electrodes based on secondary sputtering

LU Jing LI Zhiqiang LEI Cheng JIA Pinggang LIU Shilin YU Jiangang LI Yongwei LIANG Ting

Citation:

Preparation of 4H-SiC/Ti/TaSi2/Pt high-temperature lead electrodes based on secondary sputtering

LU Jing, LI Zhiqiang, LEI Cheng, JIA Pinggang, LIU Shilin, YU Jiangang, LI Yongwei, LIANG Ting
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Under high temperature and pressure conditions, silicon-based devices experience leakage and deformation due to the self-heating effect, making them unable to operate stably for a long time. Silicon carbide (SiC), as a representative third-generation semiconductor material, is an ideal option for high-temperature, high-frequency, and high-power electronic devices. However, the high-temperature performance limitations of 4H-SiC devices stem from the stability of ohmic contact electrodes and metal interconnections. The output of the lead electrodes is unstable at present, and oxygen intrusion at high temperatures can easily cause output failures. Previous studies indicate that the SiC/Ti/TaSi2/Pt multilayer structure holds significant potential for ohmic contacts. Building upon this ohmic contact foundation, this study proposes a batch sputtering-annealing process to prepare high-temperature-resistant lead electrodes. This involves altering the sequence of annealing and sputtering: first sputtering Ti/TaSi2 onto the SiC substrate and annealing to form the ohmic contact, followed by depositing a Pt protective layer to construct a novel SiC/Ti/TaSi2/Pt electrode structure. Comparative analysis of the two experimental groups is conducted using SEM, AES, XRD, thin-film stress measurement, and semiconductor analyzers. The batch-sputtered and annealed electrode structure can enhance density and reduce residual stress, with an initial specific contact resistivity of 6.35 × 10–5 Ω·cm2. High-temperature aging tests at 600 °C demonstrates superior electrical stability for electrodes formed by sputtering Pt onto Ti/TaSi2 after ohmic contact formation. These electrodes maintain ohmic characteristics even after 20-hour air aging, whereas traditional co-sputtered ohmic contacts transition to Schottky contacts. Pt effectively suppresses atomic diffusion and oxidation reactions, resulting in a smooth electrode microstructure without curling. The batch sputtering-annealing process not only greatly enhances the overall performance of SiC ohmic contacts but also provides crucial guidance for realizing the structural design and performance improvement of ohmic contacts by using other metal combinations. This approach holds significant reference value for the high-temperature packaging of third-generation semiconductor power devices and the development of electronic systems operating in harsh environments.
  • 图 1  (a) 4H-SiC NPN型TLM测试方法; (b)TLM等效电极模型; (c)N型4H-SiC的TLM样品; (d) RT - Ln

    Figure 1.  (a) 4H-SiC NPN type TLM test method; (b) equivalent electrical model of the RTLM method; (c) the fabricated N type 4H-SiC TLM samples; (d) RT - Ln graph.

    图 2  金属/SiC欧姆接触TLM样品制备流程

    Figure 2.  Fabricating processes of metal/SiC ohmic contact TLM samples.

    图 3  (a), (b) SiC/Ti/TaSi2/Pt高温退火后表面形貌; (c) SiC/Ti/TaSi2/Pt退火后电极应力分布; (d), (e) SiC/Ti/TaSi2退火后沉积Pt表面形貌; (f) SiC/Ti/TaSi2退火后沉积Pt电极应力分布

    Figure 3.  (a), (b) Surface morphology of SiC/Ti/TaSi2/Pt after high-temperature annealing; (c) electrode stress distribution of SiC/Ti/TaSi2/Pt after annealing; (d), (e) surface morphology of SiC/Ti/TaSi2 deposited Pt after annealing; (f) electrode stress distribution of SiC/Ti/TaSi2 deposited Pt after annealing.

    图 4  I-V特性 (a) 组合A(SiC/Ti/TaSi2/Pt); (b) 组合B(SiC/Ti/TaSi2形成欧姆接触后溅射Pt). 比接触电阻率与老化时间的关系 (c) 组合A(SiC/Ti/TaSi2/Pt); (d) 组合B(SiC/Ti/TaSi2形成欧姆接触后溅射Pt)

    Figure 4.  I-V characteristics: (a) Combination A(SiC/Ti/TaSi2/Pt); (b) combination B(SiC/Ti/TaSi2 sputtered Pt after forming an ohmic contact). Specific contact resistivity versus aging time: (c) Combination A(SiC/Ti/TaSi2/Pt); (d)combination B(SiC/Ti/TaSi2 sputtered Pt after forming an ohmic contact).

    图 5  SiC/Ti/TaSi2/Pt 600 ℃老化20 h后形貌 (a), (b)表面形貌; (c)SEM截面. SiC/Ti/TaSi2退火后沉积Pt 600 ℃老化20 h后形貌 (d), (e)表面形貌; (f)SEM截面. (g) SiC/Ti/TaSi2/Pt 600 ℃老化20 h后电极应力分布; (f) SiC/Ti/TaSi2退火后沉积Pt 600 ℃老化20 h后电极应力分布

    Figure 5.  SiC/Ti/TaSi2/Pt morphology after aging at 600 °C for 20 hours: (a), (b) Surface morphology; (c) SEM cross-section. SiC/Ti/TaSi2 annealed followed by Pt deposition, morphology after 600 °C aging for 20 hours: (d), (e) Surface morphology; (f) SEM cross-section. (g) Electrode stress distribution of SiC/Ti/TaSi2/Pt after 600 °C aging for 20 hours. (f) SiC/Ti/TaSi2 annealed and deposited with Pt, after aging at 600 °C for 20 hours, electrode stress distribution.

    图 6  组合A (Ti/TaSi2/Pt 共溅射退火)与组合B (分批次溅射退火)在600 ℃空气环境下老化不同时间的应力变化趋势

    Figure 6.  Stress trends of combination A (Ti/TaSi2/Pt co-sputter annealed) and combination B (batch sputter annealed) aged at 600 °C in air for different time periods.

    图 7  (a) Ti/TaSi2/Pt共溅射退火老化20 h后的XRD分析;(b)Ti/TaSi2/Pt 共溅射退火的AES分析; (c)分批次溅射退火老化20 h后的XRD分析; (d)分批次溅射退火的AES分析

    Figure 7.  (a)XRD analysis after aging for 20 hours of Ti/TaSi2/Pt co-sputtered annealing; (b) AES analysis of Ti/TaSi2/Pt co-sputtered annealing; (c) XRD analysis after aging for 20 hours of batch sputtered annealing; (d)AES analysis of batch sputtered annealing.

    Baidu
  • [1]

    Wright N G, Horsfall A B 2007 J. Phys. D: Appl. Phys. 40 6345Google Scholar

    [2]

    林洪峰, 谢二庆, 马紫微, 张 军, 彭爱华, 贺德衍 2004 53 2780Google Scholar

    Lin H F, Xie E Q, Ma Z W, Zhang J, Peng A H, He D Y 2004 Acta Phys. Sin. 53 2780Google Scholar

    [3]

    Chen J J, Peng S P, Deng S L, Zhou W, Fan Z Q, Zhang X J 2025 Acta Phys. Sin. 74 预出版(in Chinese)[陈建举, 彭淑平, 邓淑玲, 周文, 范志强, 张小姣 2025 74 in Press]

    [4]

    Anoldo L, Triolo C, Panarello S, Garescì F, Russo S, Messina A A, Calabretta M, Patanè S 2021 IEEE Electron Dev. Lett. 42 1089Google Scholar

    [5]

    Ding C, Liu H, Ngo K D T, Burgos R, Lu G Q 2021 IEEE Trans. Power Electron. 36 11672Google Scholar

    [6]

    Li G, Xu M S, Zou D Y, Cui Y X, Zhong Y, Cui P, Cheong K Y, Xia J B, Nie H K, Li S Q, Linewih H, Zhang B T, Xu X G, Han J S 2023 Crystals 13 1106Google Scholar

    [7]

    Sze S M 2006 Physics of Semiconductor Devices (New York) pp335-339

    [8]

    Shi M(translated by Zhao H M)2002 Semiconductor Device Physics and Processes (2nd Edition) (Suzhou: Suzhou University Press) pp226-227 (in Chinese)

    [9]

    Vivona M, Greco G, Lo Nigro R, Bongiorno C, Roccaforte F 2015 Journal of Applied Physics 118 035705Google Scholar

    [10]

    Evans L J, Okojie R S, Lukco D 2012 Mater. Sci. Forum 717-720 841

    [11]

    T G 2017 M. S. Thesis (Xian: Xidian University) (in Chinese)

    [12]

    Zhang Q W, Liu Y, Li H F, Wang J, Wang Y, Cheng F B, Han H J, Zhang P 2024 Sensors 24 7731Google Scholar

    [13]

    Han L B, Liang L, Kang Y, Qiu Y F 2021 IEEE Trans. Power Electron. 36 2080Google Scholar

    [14]

    He Y J, Lv H L, Tang X Y, Song Q W, Zhang Y M, Han C, Guo T, He X N, Zhang Y M, Zhang Y M 2019 J. Alloys Compd. 805 999Google Scholar

    [15]

    Liu C Y, Du J F, Rong L M, Luo T C, Gao K, Yin Y G, Xu J 2020 17th China International Forum on Solid State Lighting & 2020 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS) Shenzhen, China, November 23-25, 2020 pp247-250

    [16]

    Okojie R S, Lukco D, Chen Y L, Spry D J 2002 J. Appl. Phys. 91 6553Google Scholar

    [17]

    Wu C, Fang X D, Kang Q, Fang Z Y, Sun H, Zhang D, Zhao L B, Tian B, Maeda R, Jiang Z D 2023 J. Mater. Res. Technol. 24 2428Google Scholar

    [18]

    Zhang M L, Ren X R, Chu H G, Lv J S, Li W, Wang W G, Yang Q Q, Feng P Z 2020 Corros. Sci. 177 108982Google Scholar

    [19]

    Zhu H J, Yang T, Zhou Y, Hua S, Yang J W 2019 De Gruyter Brill 74 353

    [20]

    Ng K K, Liu R 1990 IEEE Trans. Electron Dev. 37 1535Google Scholar

    [21]

    Berger H H 1972 J. Electrochem. Soc. 119 507Google Scholar

    [22]

    王印月, 甄聪棉, 龚恒翔, 阎志军, 王亚凡, 刘雪芹, 杨映虎, 何山虎 2000 49 1348Google Scholar

    Wang Y Y, Zhen C M, Gong H X, Yan Z J, Wang Y F, Liu X Q, Yang Y H, He S H 2000 Acta Phys. Sin. 49 1348Google Scholar

    [23]

    Yu S Z, Song Y, Dong J R, Sun Y R, Zhao Y M, He Y 2016 Chin. Phys. B 25 118101Google Scholar

    [24]

    Scorzoni A, Finetti M 1988 Materials Science Reports 3 79Google Scholar

    [25]

    Zhou S X, Ai L K, Qi M, Xu A H, Yan J S, Li S S, Jin Z 2021 Chin. Phys. B 30 027304Google Scholar

    [26]

    Qiao X X, Xia T L, Chen P 2021 Chin. Phys. B 30 018104Google Scholar

    [27]

    Sha Y C, Li Z W, Jia Z C, Han B, Ni X W 2023 Chin. Phys. B 32 106104Google Scholar

    [28]

    Huang S S, Zhang X 2006 J. Micromech. Microeng. 16 382Google Scholar

    [29]

    Han L L, Du C H, Ma Z G, Jiang Y, Xiong K L, Wang W X, Chen H, Deng Z, Jia H Q 2021 Chin. Phys. Lett. 38 068102Google Scholar

    [30]

    Santerre F, El Khakani M A, Chaker M, Dodelet J P 1999 Appl. Surf. Sci. 148 24Google Scholar

    [31]

    Kwong D L 1984 Thin Solid Films 121 43Google Scholar

    [32]

    Yoon D S, Lee S M, Baik H K 2000 J. Electrochem. Soc. 147 3477Google Scholar

  • [1] Wang Fu, Zhou Yi, Gao Shi-Xin, Duan Zhen-Gang, Sun Zhi-Peng, Wang Jun, Zou Yu, Fu Bao-Qin. Molecular dynamics study of effects of point defects on thermal conductivity in cubic silicon carbide. Acta Physica Sinica, doi: 10.7498/aps.71.20211434
    [2] Zhang Hong, Guo Hong-Xia, Pan Xiao-Yu, Lei Zhi-Feng, Zhang Feng-Qi, Gu Zhao-Qiao, Liu Yi-Tian, Ju An-An, Ouyang Xiao-Ping. Transport process and energy loss of heavy ions in silicon carbide. Acta Physica Sinica, doi: 10.7498/aps.70.20210503
    [3] Wang Su-Jie, Li Shu-Qiang, Wu Xiao-Ming, Chen Fang, Jiang Feng-Yi. Study on the effect of thermal annealing process on ohmic contact performance of AuGeNi/n-AlGaInP. Acta Physica Sinica, doi: 10.7498/aps.69.20191720
    [4] Lu Yuan-Yuan, Lu Gui-Hua, Zhou Heng-Wei, Huang Yi-Neng. Preparation and properties of spodumene/silicon carbide composite ceramic materials. Acta Physica Sinica, doi: 10.7498/aps.69.20200232
    [5] Li Yuan-Yuan, Yu Yin, Meng Chuan-Min, Zhang Lu, Wang Tao, Li Yong-Qiang, He Hong-Liang, He Duan-Wei. Dynamic impact strength of diamond-SiC superhard composite. Acta Physica Sinica, doi: 10.7498/aps.68.20190350
    [6] He Tian-Li, Wei Hong-Yuan, Li Cheng-Ming, Li Geng-Wei. Comparative study of n-GaN transition group refractory metal Ohmic electrode. Acta Physica Sinica, doi: 10.7498/aps.68.20190717
    [7] Shen Shuai-Shuai, He Chao-Hui, Li Yong-Hong. Non-ionization energy loss of proton in different regions in SiC. Acta Physica Sinica, doi: 10.7498/aps.67.20181095
    [8] Wei Zheng-Hong, Yun Feng, Ding Wen, Huang Ya-Ping, Wang Hong, Li Qiang, Zhang Ye, Guo Mao-Feng, Liu Shuo, Wu Hong-Bin. Reflective Ni/Ag/Ti/Au electrode with low specific contact resistivity. Acta Physica Sinica, doi: 10.7498/aps.64.127304
    [9] Zhu Yan-Xu, Cao Wei-Wei, Xu Chen, Deng Ye, Zou De-Shu. Effect of different ohmic contact pattern on GaN HEMT electrical properties. Acta Physica Sinica, doi: 10.7498/aps.63.117302
    [10] Huang Ya-Ping, Yun Feng, Ding Wen, Wang Yue, Wang Hong, Zhao Yu-Kun, Zhang Ye, Guo Mao-Feng, Hou Xun, Liu Shuo. The reflectivity and ohmic contact resistivity of Ni/Ag/Ti/Au in contact with p-GaN. Acta Physica Sinica, doi: 10.7498/aps.63.127302
    [11] Song Kun, Chai Chang-Chun, Yang Yin-Tang, Jia Hu-Jun, Chen Bin, Ma Zhen-Yang. Effects of the improved hetero-material-gate approach on sub-micron silicon carbide metal-semiconductor field-effect transistor. Acta Physica Sinica, doi: 10.7498/aps.61.177201
    [12] Fang Chao, Liu Ma-Lin. The study of the Raman spectra of SiC layers in TRISO particles. Acta Physica Sinica, doi: 10.7498/aps.61.097802
    [13] Zhou Nai-Gen, Hong Tao, Zhou Lang. A comparative study between MEAM and Tersoff potentials on the characteristics of melting and solidification of carborundum. Acta Physica Sinica, doi: 10.7498/aps.61.028101
    [14] Pan Shu-Wan, Qi Dong-Feng, Chen Song-Yan, Li Cheng, Huang Wei, Lai Hong-Kai. Se ultrathin film growth on Si(100) substrate and its application in Ti/n-Si(100) ohmic contact. Acta Physica Sinica, doi: 10.7498/aps.60.098108
    [15] Wang Guang-Xu, Jiang Feng-Yi, Feng Fei-Fei, Liu Jun-Lin, Qiu Chong. N-polar n-type ohmic contact of GaN-based LED on Si substrate. Acta Physica Sinica, doi: 10.7498/aps.59.5706
    [16] Huang Wei, Chen Zhi-Zhan, Chen Yi, Shi Er-Wei, Zhang Jing-Yu, Liu Qing-Feng, Liu Qian. Effect of Ni thickness on the contact properties of Ni/6H-SiC analyzed by combinatorial method. Acta Physica Sinica, doi: 10.7498/aps.59.3466
    [17] Lin Tao, Chen Zhi-Ming, Li Jia, Li Lian-Bi, Li Qing-Min, Pu Hong-Bin. Study of the growth characteristics of SiCGe layers grown on 6H-SiC substrates. Acta Physica Sinica, doi: 10.7498/aps.57.6007
    [18] Ding Zhi-Bo, Wang Kun, Chen Tian-Xiang, Chen Di, Yao Shu-De. Investigation on the formation mechanism and diffusion of the electrode metal of oxidized Au/Ni/p-GaN ohmic contact in different alloying time. Acta Physica Sinica, doi: 10.7498/aps.57.2445
    [19] Tang Xiao-Yan, Zhang Yi-Men, Zhang He-Ming, Zhang Yu-Ming, Dai Xian-Ying, Hu Hui-Yong. 3UCVD deposition SiO2 on SiC wafer and its C-V measurement. Acta Physica Sinica, doi: 10.7498/aps.53.3225
    [20] Wang Jian-Ping, Hao Yue, Peng Jun, Zhu Zuo-Yun, Zhang Yong-Hua. . Acta Physica Sinica, doi: 10.7498/aps.51.1793
Metrics
  • Abstract views:  263
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Received Date:  20 June 2025
  • Accepted Date:  08 August 2025
  • Available Online:  02 September 2025
  • /

    返回文章
    返回
    Baidu
    map