Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Detection of ionization time-delay in atoms and molecules by strong-field multiphoton transition interferometry

WEI Menghao LI Xing LUO Sizuo HE Lanhai DING Dajun

Citation:

Detection of ionization time-delay in atoms and molecules by strong-field multiphoton transition interferometry

WEI Menghao, LI Xing, LUO Sizuo, HE Lanhai, DING Dajun
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Attosecond ionization dynamics, a central topic in ultrafast science, largely depends on advances in experimental techniques and theoretical modeling to reveal the fundamental processes that control the evolution of matter on an ultrafast timescale. Among the cutting-edge approaches in this field, the strong-field multiphoton transition interferometry (SFMPTI) method stands out due to its ability to detect multiphoton ionization dynamics with attosecond time resolution via quantum path interference. This technique has been widely applied to the attosecond-scale measurements and characterizations of ionization time delays with quantum-state specificity, ranging from atomic systems to complex molecules. It provides a novel time-domain perspective in the study of strong-field physics. This article focuses on the application of the SFMPTI in probing strong-field multiphoton ionization time delays in atoms and molecules. We systematically present the quantum interference mechanisms behind the method: electrons undergo multi-photon above-threshold ionization (ATI) driven by a 400 nm laser pulse, while an additional 800 nm laser pulse induces the sideband signals through two-color interference. The relative phases encoding of these sidebands provides precise timing information about the ionization process. Furthermore, we summarize the recent advances in attosecond-resolved investigations of ATI dynamics and resonance-state-mediated time delays. For instance, the significant influence of resonance-enhanced multiphoton ionization (REMPI) processes involving different intermediate states in Ar atoms on ionization time delays is elucidated, highlighting the important influences of Freeman resonances on photoelectron emission dynamics in strong laser fields. Additionally, nuclear vibrations in NO molecules change ionization trajectories via nonadiabatic coupling of potential energy surfaces, leading to variations in time delay. Notably, the substantial influence of internuclear distance on ionization delay highlights the high sensitivity of electron-nuclear co-evolution to ultrafast phenomena. Finally, we discuss the potential applications and remaining challenges of this emerging technique, which will continue to open up new avenues for exploring attosecond electron dynamics in complex systems.
  • 图 1  强场多光子跃迁干涉方法的光路图

    Figure 1.  Schematic of the strong-field multiphoton transition interferometry (SFMPTI) setup.

    图 2  调控光场相位测量光电子边带 (a)双色场重合区相位扫描中的Ar+产率; (b1) Ar原子在400 nm激光下的光电子成像; (b2), (b3) Ar原子在双色激光场中不同相位点下的光电子成像

    Figure 2.  Phase-controlled measurement of photoelectron sidebands: (a) Ar+ yield as a function of phase delay in the overlapping region of the two-color laser field; (b1) photoelectron imaging of Ar atoms under a 400 nm laser field; (b2), (b3) photoelectron imaging of Ar atoms at different relative phases of the two-color laser field.

    图 3  Ar原子在强场中电离实验和理论结果[47] (a)单400 nm激光作用下的光电子二维动量分布; (b)双色激光场中Ar光电子二维动量分布; (c)—(f)相应的400 nm激光场和双色激光场实验测量和理论计算得到的光电子能谱

    Figure 3.  Experimental and theoretical results of strong-field ionization of Ar atoms[47]: (a) Photoelectron momentum distribution under a single 400 nm laser field; (b) photoelectron momentum distribution in a two-color laser field; (c)–(f) The measured and calculated photoelectron spectra at the single 400-nm field and the TC field, respectively.

    图 4  Ar原子光电子能量-相位谱的实验和理论比较[47] (a)低光强条件下的实验和理论的光电子能谱; (b), (c)为双色场中实验和理论的光电子二位能量-相位谱;(d), (e)对应(b), (c)的数据计算得到的能谱非对称度

    Figure 4.  Experimental and theoretical comparison of photoelectron energy-phase spectra of Ar atoms[47]: (a) Photoelectron spectra under low laser intensity, comparing experiment and theory; (b), (c) two-dimensional energy-phase spectra of photoelectrons in two-color laser field from experiment and theory, respectively; (d), (e) energy spectrum asymmetries calculated from (b) and (c), respectively.

    图 5  Ar 原子在双色场中多光子电离相对延迟结果[47] (a), (b)高光强下(a)实验测量和(b)理论模拟的光电子能谱; (c)两种光强中多光子电离的 ATIs 和边带的相对相位(时间)延迟

    Figure 5.  Relative delay results of multiphoton ionization of Ar atoms in a two-color laser field[47]: (a) Experimental and (b) theoretical photoelectron energy spectra under high laser intensity; (c) relative phase (time) delay of ATI peaks and sidebands at two laser intensities.

    图 6  Ar 原子多光子电离中共振通道间的相对时间延迟[47]

    Figure 6.  Extracted relative time delays between resonant ionization channels in the multiphoton ionization of Ar atoms[47]

    图 7  (a)实验装置示意图; (b) NO分子势能曲线[45]

    Figure 7.  (a) Schematic of the experimental setup; (b) potential energy curves of the NO molecule[45].

    图 8  (a), (b)测量和模拟的光电子能谱; (c)光电子能谱; (d)不对称度[45]

    Figure 8.  (a), (b)Measured and simulated photoelectron spectra, respectively; (c) photoelectron energy spectra; (d) asymmetry[45].

    图 9  (a)各光电子峰相对相位图; (b) $ {{\text{A}}^2}{\Sigma ^ + } $和$ {{\text{B}}^2}\Pi $共振形成的边带的相对相位; (c) $ {{\text{A}}^2}{\Sigma ^ + } $, $ {{\text{B}}^2}\Pi $和(d)离子态$ {{\text{X}}^1}{\Sigma ^ + } $不同振动态波函数的绝对值平方[45]

    Figure 9.  (a) Relative phases of each photoelectron peak; (b)relative phases of the sidebands formed by the resonance of $ {{\text{A}}^2}{\Sigma ^ + } $ and $ {{\text{B}}^2}\Pi $ states; (c), (d) absolute squares of the vibrational wave functions for different vibrational levels of the neutral and ionic states, respectively[45].

    图 10  (a)测量得到的从+y轴发射的光电子相位积分角度分布; (b)对应于$ {{\text{A}}^2}{\Sigma ^ + } $态的两个边带相位角度依赖的比较; (c)对应于$ {{\text{B}}^2}\Pi $的两个边带相位角度依赖的比较, $ {\nu }''=1, 2, 3 $表示NO+的不同振动态[45]

    Figure 10.  (a) Measured phase-integrated angular distribution of photoelectrons emitted along the +y axis; (b) comparison of angle-dependent phases retrieved for two sidebands of the $ {{\text{A}}^2}{\Sigma ^ + } $states; (c) same as Fig. (b), but for sidebands of the $ {{\text{B}}^2}\Pi $ states, $ {\nu }''=1, 2, 3 $ denotes different vibrational states of the NO+[45].

    Baidu
  • [1]

    Maiman T 1960 Phys. Rev. Lett. 4 564Google Scholar

    [2]

    Pilipovich V A, Morgun Y F 1965 J. Appl. Spectrosc. 3 67Google Scholar

    [3]

    DeMaria A J, Stetser D A, Heynau H 1966 Appl. Phys. Lett. 8 174Google Scholar

    [4]

    Shank C V, Ippen E P 1974 Appl. Phys. Lett. 24 373Google Scholar

    [5]

    Maine P, Strickland D, Bado P, Pessot M, Mourou G 1988 IEEE J. Quantum Electron. 24 398Google Scholar

    [6]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [7]

    Zewail A H 1990 Sci. Am. 263 76

    [8]

    Zewail A H 2000 J. Phys. Chem. A 104 5660Google Scholar

    [9]

    Zewail A H, Bernstein R B 1988 Chem. Eng. News 66 24

    [10]

    Spence D E, Kean P N, Sibbett W 1991 Opt. Lett. 16 42Google Scholar

    [11]

    Herschbach D R 1987 Angew. Chem. Int. Ed. 26 1221Google Scholar

    [12]

    Lee Y T 1987 Science 236 793Google Scholar

    [13]

    Zare R N, Bernstein R B 1980 Phys. Today 33 43Google Scholar

    [14]

    Ueda K, Eland J H D 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S839Google Scholar

    [15]

    Chandler D W, Houston P L 1987 J. Chem. Phys. 87 1445Google Scholar

    [16]

    Arasaki Y, Takatsuka K, Wang K, McKoy V 2010 J. Chem. Phys. 132 124307Google Scholar

    [17]

    Wörner H J, Bertrand J B, Fabre B, Higuet J, Ruf H, Dubrouil A, Patchkovskii S, Spanner M, Mairesse Y, Blanchet V, Mével E, Constant E, Corkum P B, Villeneuve D M 2011 Science 334 208Google Scholar

    [18]

    Ditmire T, Donnelly T, Falcone R W, Perry M D 1995 Phys. Rev. Lett. 75 3122Google Scholar

    [19]

    Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, Reis D A 2011 Nat. Phys. 7 138Google Scholar

    [20]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689Google Scholar

    [21]

    Golde D, Meier T, Koch S W 2008 Phys. Rev. B 77 075330Google Scholar

    [22]

    Ferray M, L'Huillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 L31Google Scholar

    [23]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [24]

    Pfeiffer A N, Cirelli C, Smolarski M, Dörner R, Keller U 2011 Nat. Phys. 7 428Google Scholar

    [25]

    Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R, Keller U 2008 Nat. Phys. 4 565Google Scholar

    [26]

    Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Abu-Samha M, Madsen L B, Keller U 2012 Nat. Phys. 8 76Google Scholar

    [27]

    Li X K, Liu X W, Wang C C, Ben S, Zhou S P, Yang Y Z, Song X H, Chen J, Yang W F, Ding D J 2024 Light Sci. Appl. 13 250Google Scholar

    [28]

    Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348Google Scholar

    [29]

    Cavalieri A L, Müller N, Uphues T, Yakovlev V S, Baltuška A, Horvath B, Schmidt B, Blümel L, Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberger R, Krausz F, Heinzmann U 2007 Nature 449 1029Google Scholar

    [30]

    Schultze M, Bothschafter E M, Sommer A, Holzner S, Schweinberger W, Fiess M, Hofstetter M, Kienberger R, Apalkov V, Yakovlev V S, Stockman M I, Krausz F 2013 Nature 493 75Google Scholar

    [31]

    Sommer A, Bothschafter E M, Sato S A, Jakubeit C, Latka T, Razskazovskaya O, Fattahi H, Jobst M, Schweinberger W, Shirvanyan V, Yakovlev V S, Kienberger R, Yabana K, Karpowicz N, Schultze M, Krausz F 2016 Nature 534 86Google Scholar

    [32]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803Google Scholar

    [33]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [34]

    Jiménez-Galán Á, Argenti L, Martín F 2014 Phys. Rev. Lett. 113 263001Google Scholar

    [35]

    Aseyev S A, Ni Y, Frasinski L J, Muller H G, Vrakking M J J 2003 Phys. Rev. Lett. 91 223902Google Scholar

    [36]

    Mairesse Y, De Bohan A, Frasinski L J, Merdji H, Dinu L C, Monchicourt P, Breger P, Kovacev M, Taïeb R, Carré B, Muller H G, Agostini P, Salières P 2003 Science 302 1540Google Scholar

    [37]

    Klünder K, Dahlström J M, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A, Taïeb R, L’Huillier A 2011 Phys. Rev. Lett. 106 143002Google Scholar

    [38]

    Dahlström J M, Guénot D, Klünder K, Gisselbrecht M, Mauritsson J, L’Huillier A, Maquet A, Taïeb R 2013 Chem. Phys. 414 53Google Scholar

    [39]

    Nandi S, Plésiat E, Zhong S, Palacios A, Busto D, Isinger M, Neoričić L, Arnold C L, Squibb R J, Feifel R, Decleva P, L’Huillier A, Martín F, Gisselbrecht M 2020 Sci. Adv. 6 eaba7762Google Scholar

    [40]

    Cattaneo L, Vos J, Lucchini M, Gallmann L, Cirelli C, Keller U 2016 Opt. Express 24 29060Google Scholar

    [41]

    Eisenbud L 1948 The Formal Properties of Nuclear Collisions Ph. D. Dissertation (Princeton: Princeton University

    [42]

    Wigner E P 1955 Phys. Rev. 98 145Google Scholar

    [43]

    Smith F T 1960 Phys. Rev. 118 349Google Scholar

    [44]

    Zipp L J, Natan A, Bucksbaum P H 2014 Optica 1 361Google Scholar

    [45]

    Li X, Liu Y, Zhang D D, He L H, Luo S Z, Shu C C, Ding D J 2023 Phys. Rev. A 108 023114Google Scholar

    [46]

    Beaulieu S, Comby A, Clergerie A, Caillat J, Descamps D, Dudovich N, Fabre B, Géneaux R, Légaré F, Petit S, Pons B, Porat G, Ruchon T, Taïeb R, Blanchet V, Mairesse Y 2017 Science 358 1288Google Scholar

    [47]

    Li X, Gao X H, Li W K, Yang T, Zhang D D, He L H, Luo S Z, Zhao S F, Ding D J 2024 Phys. Rev. A 109 013103Google Scholar

    [48]

    Han M, Liang H, Ge P P, Fang Y Q, Guo Z N, Yu X Y, Deng Y K, Peng L Y, Gong Q H, Liu Y Q 2020 Phys. Rev. A 102 061101Google Scholar

    [49]

    Song X H, Shi G L, Zhang G J, Xu J W, Lin C, Chen J, Yang W F 2018 Phys. Rev. Lett. 121 103201Google Scholar

    [50]

    Johnson P M 1980 Acc. Chem. Res. 13 20Google Scholar

    [51]

    Bebb H B, Gold A 1966 Phys. Rev. 143 1Google Scholar

    [52]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127Google Scholar

    [53]

    Swoboda M, Dahlström J M, Ruchon T, Johnsson P, Mauritsson J, L’Huillier A, Schafer K J 2009 Laser. Phys. 19 1591Google Scholar

    [54]

    Song X H, Xu J W, Lin C, Sheng Z H, Liu P, Yu X H, Zhang H T, Yang W F, Hu S L, Chen J, Xu S P, Chen Y J, Qua W, Liu X J 2017 Phys. Rev. A 95 033426Google Scholar

    [55]

    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logman P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, van der Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M, Ivanov M Y, Smirnova O, Bauer D, Popruzhenko S V, Vrakking M J J 2011 Science 331 61Google Scholar

    [56]

    Ge P P, Han M, Liu M M, Gong Q H, Liu Y Q 2018 Phys. Rev. A 98 013409Google Scholar

    [57]

    Gong X C, Lin C, He F, Song Q Y, Lin K, Ji Q Y, Zhang W B, Ma J Y, Lu P F, Liu Y Q, Zeng H P, Yang W F, Wu J 2017 Phys. Rev. Lett. 118 143203Google Scholar

    [58]

    Saloman E B 2010 J. Phys. Chem. Ref. Data 39 033101Google Scholar

    [59]

    Freeman R R, Bucksbaum P H, Milchberg H, Darack S, Schumacher D, Geusic M E 1987 Phys. Rev. Lett. 59 1092Google Scholar

    [60]

    Su J, Ni H, Jaroń-Becker A, Becker A 2014 Phys. Rev. Lett. 113 263002Google Scholar

    [61]

    Kheifets A S, Bray A W 2021 Phys. Rev. A 103 L011101Google Scholar

    [62]

    Kheifets A S 2021 Phys. Rev. A 104 L021103Google Scholar

    [63]

    Yu X, Wang N, Lei J T, Shao J X, Morishita T, Zhao S F, Najjari B, Ma X W, Zhang S F 2022 Phys. Rev. A 106 023114Google Scholar

    [64]

    Maharjan C, Alnaser A, Litvinyuk I, Ranitovic P, Cocke C 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1955Google Scholar

    [65]

    Bertolino M, Dahlström J M 2021 Phys. Rev. Research 3 013270Google Scholar

    [66]

    Isinger M, Squibb R J, Busto D, Zhong S, Harth A, Kroon D, Nandi S, Arnold C L, Miranda M, Dahlström J M, Lindroth E, Feifel P, Gisselbrecht M, L’Huillier A 2017 Science 358 893Google Scholar

    [67]

    López S D, Donsa S, Nagele S, Arbó D, Burgdörfer J 2021 Phys. Rev. A 104 043113Google Scholar

    [68]

    Dahlström J M, L’Huillier A, Maquet A 2012 J. Phys. B: At. Mol. Opt. Phys. 45 183001Google Scholar

    [69]

    Bharti D, Atri-Schuller D, Menning G, Hamilton K R, Moshammer R, Pfeifer T, Douguet N, Bartschat K, Harth A 2021 Phys. Rev. A 103 022834Google Scholar

    [70]

    Borràs V J, González-Vázquez J, Argenti L, Martín F 2023 Sci. Adv. 9 eade3855Google Scholar

    [71]

    Patchkovskii S, Benda J, Ertel D, Busto D 2023 Phys. Rev. A 107 043105Google Scholar

    [72]

    Kowalewski M, Bennett K, Rouxel J R, Mukamel S 2016 Phys. Rev. Lett. 117 043201Google Scholar

    [73]

    Wang A L, Serov V V, Kamalov A, Bucksbaum P H, Kheifets A, Cryan J P 2021 Phys. Rev. A 104 063119Google Scholar

    [74]

    Cattaneo L, Vos J, Bello R Y, Palacios A, Heuser S, Pedrelli L, Lucchini M, Cirelli C, Martín F, Keller U 2018 Nat. Phys. 14 733Google Scholar

    [75]

    Vos J, Cattaneo L, Patchkovskii S, Zimmermann T, Cirelli C, Lucchini M, Kheifets A, Landsman A S, Keller U 2018 Science 360 1326Google Scholar

    [76]

    Holzmeier F, Joseph J, Houver J C, Lebech M, Dowek D, Lucchese R R 2021 Nat. Commun. 12 7343Google Scholar

    [77]

    Piancastelli M N 1999 J. Electron. Spectrosc. Relat. Phenom. 100 167Google Scholar

    [78]

    Huppert M, Jordan I, Baykusheva D, Von Conta A, Wörner H J 2016 Phys. Rev. Lett. 117 093001Google Scholar

    [79]

    Kamalov A, Wang A L, Bucksbaum P H, Haxton D J, Cryan J P 2020 Phys. Rev. A 102 023118Google Scholar

    [80]

    Guo Z N, Ge P P, Fang Y Q, Dou Y K, Yu X Y, Wang J G, Gong Q H, Liu Y Q 2022 Ultrafast Sci. 2022 9802917

    [81]

    Trabert D, Brennecke S, Fehre K, Anders N, Geyer A, Grundmann S, Schöffler M S, Schmidt L P H, Jahnke T, Dörner R, Kunitski M, Eckart S 2021 Nat. Commun. 12 1697Google Scholar

    [82]

    Wallace S, Dill D, Dehmer J L 1982 J. Chem. Phys. 76 1217Google Scholar

    [83]

    Wang B X, Liu B K, Wang Y Q, Wang L 2010 Phys. Rev. A 81 043421Google Scholar

    [84]

    Neoričić L, Busto D, Laurell H, Weissenbilder R, Ammitzböll M, Luo S, Peschel J, Wikmark H, Lahl J, Maclot S, Squibb R J, Zhong S, Eng-Johnsson P, Arnold C L, Feifel R, Gisselbrecht M, Lindroth E, L’Huillier A 2022 Front. Phys. 10 964586Google Scholar

    [85]

    Rist J, Klyssek K, Novikovskiy N M, Kircher M, Vela-Pérez I, Trabert D, Grundmann S, Tsitsonis D, Siebert J, Geyer A, Melzer N, Schwarz C, Anders N, Kaiser L, Fehre K, Hartung A, Eckart S, Schmidt L P H, Schöffler M S, Davis V T, Williams J B, Trinter F, Dörner R, Demekhin P V, Jahnke T 2021 Nat. Commun. 12 6657Google Scholar

    [86]

    Hu W H, Liu Y, Luo S Z, Li X, Yu J Q, Li X K, Sun Z G, Yuan K J, Bandrauk A D, Ding D J 2019 Phys. Rev. A 99 011402Google Scholar

    [87]

    Liu Y, Hu W H, Luo S Z, Yuan K J, Sun Z G, Bandrauk A D, Ding D J 2019 Phys. Rev. A 100 023404Google Scholar

    [88]

    Qin F, Shi W, Ideue T, Yoshida M, Zak A, Tenne R, Kikitsu T, Inoue D, Hashizume D, Iwasa Y 2017 Nat. Commun. 8 14465Google Scholar

    [89]

    Naaman R, Waldeck D H 2015 Annu. Rev. Phys. Chem. 66 263Google Scholar

  • [1] ZHANG Yichen, DING Nannan, LI Jialin, FU Yuxi. Attosecond transient absorption spectroscopy: an ultrafast optical probe for revealing electron dynamics. Acta Physica Sinica, doi: 10.7498/aps.74.20250546
    [2] WANG Huiyong, LI Mingxuan, LUO Sizuo, DING Dajun. Research progress of high-energy-resolution photoelectron interferometer. Acta Physica Sinica, doi: 10.7498/aps.74.20250534
    [3] Yang Xu, Feng Hong-Mei, Liu Jia-Nan, Zhang Xiang-Qun, He Wei, Cheng Zhao-Hua. Ultrafast spin dynamics: From femtosecond magnetism to attosecond magnetism. Acta Physica Sinica, doi: 10.7498/aps.73.20240646
    [4] Wang Jing-Zhe, Dong Fu-Long, Liu Jie. Dissociation dynamic study of $\text{H}_2^+$ in time-delayed two-color femtosecond lasers. Acta Physica Sinica, doi: 10.7498/aps.73.20241283
    [5] Tao Jian-Fei, Xia Qin-Zhi, Liao Lin-Gu, Liu Jie, Liu Xiao-Jing. Theory and application of photoelectron trajectory interference holography for atomic ionization in intense laser field. Acta Physica Sinica, doi: 10.7498/aps.71.20221296
    [6] Xu Yi-Dan, Jiang Wen-Yu, Tong Ji-Hong, Han Lu-Lu, Zuo Zi-Tan, Xu Li-Ming, Gong Xiao-Chun, Wu Jian. Precise measurement of attosecond dynamics of NO molecular shape resonance. Acta Physica Sinica, doi: 10.7498/aps.71.20221735
    [7] Luo Xiao-Fei, Wang Bo, Peng Kuan, Xiao Jia-Ying. Back-projection method with fast time-delay correction for photoacoustic tomography reconstruction based on a focused sound field model. Acta Physica Sinica, doi: 10.7498/aps.71.20212019
    [8] Zhao Xin-Jun, Li Jiu-Zhi, Jiang Zhong-Ying. Influence of time delay on dynamics of cell cycle. Acta Physica Sinica, doi: 10.7498/aps.70.20210323
    [9] Huang Cheng, Zhong Ming-Min, Wu Zheng-Mao. Intensity-dependent recollision dynamics in strong-field nonsequential double ionization. Acta Physica Sinica, doi: 10.7498/aps.68.20181811
    [10] Yan Yi-Hui, Liu Yu-Zhu, Ding Peng-Fei, Yin Wen-Yi. Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique. Acta Physica Sinica, doi: 10.7498/aps.67.20181468
    [11] Wang Yan-Mei, Tang Ying, Zhang Song, Long Jin-You, Zhang Bing. Excited state dynamics of molecules studied with femtosecond time-resolved mass spectrometry and photoelectron imaging. Acta Physica Sinica, doi: 10.7498/aps.67.20181334
    [12] Liu Yu-Zhu, Chen Yun-Yun, Zheng Gai-Ge, Jin Feng, Gregor Knopp. Multiphoton ionization and dissociation dynamics of Freon-113 induced by femtosecond laser pulse. Acta Physica Sinica, doi: 10.7498/aps.65.053302
    [13] Zhang Chun-Yan, Liu Xian-Ming. Dynamic behavior of hydrogen clusters under intense femtosecond laser. Acta Physica Sinica, doi: 10.7498/aps.64.163601
    [14] Yang Qing, Du Guang-Qing, Chen Feng, Wu Yan-Min, Ou Yan, Lu Yu, Hou Xun. Investigation on the electron dynamics of periodic nano ripple formation on fused silica induced by temporally shaped femtosecond laser. Acta Physica Sinica, doi: 10.7498/aps.63.047901
    [15] Yang Lin-Jing. Effects of time delay on transition rate of state in an increasing process of Logistic system. Acta Physica Sinica, doi: 10.7498/aps.60.050502
    [16] Lin Ling, Yan Yong, Mei Dong-Cheng. Time delay to enhance the giant suppression in a bistable system. Acta Physica Sinica, doi: 10.7498/aps.59.2240
    [17] Cao Ning, Long Yong-Bing, Zhang Zhi-Guo, Gao Li-Juan, Yuan Jie, Zhao Bo-Ru, Zhao Shi-Ping, Yang Qian-Sheng, Zhao Ji-Min, Fu Pan-Ming. Femtosecond time-resolved dynamics in electron-doped high-Tc superconductor La2-xCexCuO4. Acta Physica Sinica, doi: 10.7498/aps.57.2543
    [18] Guo Li-Jun, Wüstenberg Jan-Peter, Oleksiy Andreyev, Bauer Michael, Aeschlimann Martin. Spin dynamics of GaAs(100) by two-photon photoemission. Acta Physica Sinica, doi: 10.7498/aps.54.3200
    [19] HUANG XIAN-GAO, XU JIAN-XUE, HUANG WEI, ZHU FU-CHEN. ERROR ANALYSIS FOR DELAY SYNCHRONIZATION OF CHAOTIC SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.50.2296
    [20] ZHU RONG, HAN JING-CHENG, GUAN YI-FU, LIU HOU-XIANG, LI SHU-AIO, WU CUN-KAI. DYNAMICS OF MULTIPHOTON IONIZATION OF ACETALDEHYDE BY UV LASER. Acta Physica Sinica, doi: 10.7498/aps.36.459
Metrics
  • Abstract views:  1530
  • PDF Downloads:  63
  • Cited By: 0
Publishing process
  • Received Date:  16 May 2025
  • Accepted Date:  10 June 2025
  • Available Online:  18 June 2025
  • /

    返回文章
    返回
    Baidu
    map