Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamic behavior of hydrogen clusters under intense femtosecond laser

Zhang Chun-Yan Liu Xian-Ming

Citation:

Dynamic behavior of hydrogen clusters under intense femtosecond laser

Zhang Chun-Yan, Liu Xian-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The molecular dynamics model is adopted to investigate the dynamical behavior of hydrogen cluster irradiated by an intense femtosecond laser. Being contrary to the predictions from the Coulomb explosion model, this paper points out that the explosion of hydrogen cluster is anisotropic. The component of proton energy along the laser polarization direction is much larger than the component perpendicular to the polarization direction. This paper discusses the mechanism responsible for the anisotropy explosion. In the process of the interaction of femtosecond laser with cluster, the electrons undergo the inner ionization and then oscillate along the direction of laser polarization. During the oscillation of electrons, part of them will escape from cluster. The escaping of the electrons would lead to two correlation effects. First, the anisotropic distribution of the electric field caused by the oscillation of electrons would not be neutralized. For one thing, during the oscillating of electrons, they will be pulled to one pole of cluster so the electric field of the opposite pole would be larger, the electrons in this region will experience larger Coulomb repulsive force and gain lager acceleration. For another thing, the electron number contained in the cluster will decline during each laser cycle. So the proton in this region will gain a pure acceleration. Second, during the oscillation of electrons, part of electrons will escape from cluster. During their escaping they will pull the protons at the pole and the protons move toward the direction of electron escaping direction. These two correlation effects cause the anisotropic explosion of hydrogen cluster. This paper also discusses the influences of cluster and laser parameters on the degree of anisotropy.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11365008, 51408204).
    [1]

    Ditmire T, Smith R A, Tisch J W G, Hutchinson M H R 1997 Phys. Rev. Lett. 78 3121

    [2]

    Lin J Q, Zhang J, Li Y J, Chen L M, L T Z, Teng H 2001 Acta Phys. Sin. 50 457 (in Chinese) [林景全, 张杰, 李英骏, 陈黎明, 吕铁铮, 滕浩 2001 50 457]

    [3]

    Li H Y, Liu J S, Wang C, Ni G Q, Li R X, Xu Z Z 2006 Phys. Rev. A 74 023201

    [4]

    Ditmire T, Donnelly T, Rubenchik A M, Falcone R W, Perry M D 1996 Phys. Rev. A 53 3379

    [5]

    Ditmire T, Tisch J W G, Sprimpring E, Mason M B, Hay N, Smith R A, Marangos J, Hutchinson M H R 1997 Nature 386 54

    [6]

    Last I, Jorthner J 1999 Phys. Rev. A 60 2215

    [7]

    Schnrer M, Ter-Avetisyan S, Stiel H, Vogt U, Radloff W, Kalashnikov M, Sandner W, Nickles P V 2001 Eur. Phys. J. D 14 331

    [8]

    McPherson A, Luk T S, Thompson B D, Borisov A B, Shiryaev B, Chen X, Boyer K, Rhodes C K 1994 Phys. Rev. Lett. 72 1810

    [9]

    Ditmire T, Donnelly T, Faleone R W, Perry M D 1995 Phys. Rev. Lett. 75 3122

    [10]

    McPherson A, Thompson B D, Borisov A B, Boyer K, Rhodes C K 1994 Nature 370 631

    [11]

    Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. Lett. 68 3535

    [12]

    Velotta R, Hay N, Mason M B, Castillejo M, Marangos J P 2001 Phys. Rev. Lett. 87 183901

    [13]

    Ditmire T, GTisch J W, Yanovsky V P, Cowan T E, Hays G, Wharton K B 1999 Nature 398 489

    [14]

    Zweiback J, Cowan T E, Hartley J H, Howell R, Wharton K B, Crane J K, Yanovsky V P, Hays G 2002 Phys. Plasmas 9 3108

    [15]

    Donnelly T D, Ditmire T, Neuman K, Perry M D, Falcone R W

    [16]

    Mendham K J, Hay N, Mason M B, Tisch J W G, Marangos J P 2001 Phys. Rev. A 64 055201

    [17]

    Dammasch M, Drr M, Eichmann U, Lenz E, Sandner W 2001 Phys. Rev. A 64 061402

    [18]

    Lebeault M A, Viallon J, Chevaleyre J, Ellert C, Normand D, Schmidt M, Sublemontier O, Guet C, Huber B 2002 Eur. Phys. J. D 20 233

    [19]

    Vozzi C, Nisoli M, Caumes J P, Sansone G, Stagira S, De-Silvestri S, Vecchiocattivi M, Bassi D, Pascolini M, Poletto L, Villoresi P, Tondello G 2005 Appl. Phys. Lett. 86 111121

    [20]

    Sun Y Q, Chen L M, Zhang L, Mao J Y, Liu F, Li D Z, Liu C, Li W C, Wang Z H, Li Y J, Wei Z Y, Zhang J 2012 Acta Phys. Sin. 61 075206 (in Chinese) [孙彦乾, 陈黎明, 张璐, 毛婧一, 刘峰, 李大章, 刘成, 李伟昌, 王兆华, 李英骏, 魏志义, 张杰 2012 61 075206]

    [21]

    Rozet J P, Cornille M, Dobosz S, Dubau J, Gauthier J C, Jacquemot S, Lamour E, Lezius M, Normand D, Schmidt M, Vernhet D 2001 Phys. Scr. T 92 113

    [22]

    Kumarappan V, Krishnamurthy M 2001 Phys. Rev. Lett. 87 085005

    [23]

    Kumarappan V, Krishnamurthy M, Mathur D 2002 Phys. Rev. A 66 033203

    [24]

    Krishnamurthy M, Mathur D, Kumarappan V 2004 Phys. Rev. A 69 033202

    [25]

    Hirokane M, Shimizu S, Hashida M, Okada S, Okihara S, Sato F, Iida T, Sakabe S 2004 Phys. Rev. A 69 063201

    [26]

    Fennel T, Bertsch G F, Meiwes-Broer K H 2004 Eur. Phys. J. D 29 367

    [27]

    Jungreuthmayer C, Geissler M, Zanghellini J, Brabec T 2004 Phys. Rev. Lett. 92 133401

    [28]

    Symes D R, Hohenberger M, Henig A, Ditmire T 2007 Phys. Rev. Lett. 98 123401

    [29]

    Li H Y, Liu J S, Wang C, Ni G Q, Li R X, Xu Z Z

    [30]

    Milchberg H M, McNaught S J, Parra E 2001 Phys. Rev. E 64 056402

    [31]

    Zhang C Y, Zhao Q, Fu L B, Liu J 2012 Acta Phys. Sin. 61 143601 (in Chinese) [张春艳, 赵清, 傅立斌, 刘杰 2012 61 143601]

    [32]

    Cheng R, Zhang C Y, Fu L B, Liu J 2015 J. Phys. B: At. Mol. Opt. Phys. 48 035601

    [33]

    Augst S, Meyerhofer D D, Strickland D, Chint S L 1991 J. Opt. Soc. Am. B 8 858

    [34]

    Last I, Jortner J 2000 Phys. Rev. A 62 013201

  • [1]

    Ditmire T, Smith R A, Tisch J W G, Hutchinson M H R 1997 Phys. Rev. Lett. 78 3121

    [2]

    Lin J Q, Zhang J, Li Y J, Chen L M, L T Z, Teng H 2001 Acta Phys. Sin. 50 457 (in Chinese) [林景全, 张杰, 李英骏, 陈黎明, 吕铁铮, 滕浩 2001 50 457]

    [3]

    Li H Y, Liu J S, Wang C, Ni G Q, Li R X, Xu Z Z 2006 Phys. Rev. A 74 023201

    [4]

    Ditmire T, Donnelly T, Rubenchik A M, Falcone R W, Perry M D 1996 Phys. Rev. A 53 3379

    [5]

    Ditmire T, Tisch J W G, Sprimpring E, Mason M B, Hay N, Smith R A, Marangos J, Hutchinson M H R 1997 Nature 386 54

    [6]

    Last I, Jorthner J 1999 Phys. Rev. A 60 2215

    [7]

    Schnrer M, Ter-Avetisyan S, Stiel H, Vogt U, Radloff W, Kalashnikov M, Sandner W, Nickles P V 2001 Eur. Phys. J. D 14 331

    [8]

    McPherson A, Luk T S, Thompson B D, Borisov A B, Shiryaev B, Chen X, Boyer K, Rhodes C K 1994 Phys. Rev. Lett. 72 1810

    [9]

    Ditmire T, Donnelly T, Faleone R W, Perry M D 1995 Phys. Rev. Lett. 75 3122

    [10]

    McPherson A, Thompson B D, Borisov A B, Boyer K, Rhodes C K 1994 Nature 370 631

    [11]

    Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. Lett. 68 3535

    [12]

    Velotta R, Hay N, Mason M B, Castillejo M, Marangos J P 2001 Phys. Rev. Lett. 87 183901

    [13]

    Ditmire T, GTisch J W, Yanovsky V P, Cowan T E, Hays G, Wharton K B 1999 Nature 398 489

    [14]

    Zweiback J, Cowan T E, Hartley J H, Howell R, Wharton K B, Crane J K, Yanovsky V P, Hays G 2002 Phys. Plasmas 9 3108

    [15]

    Donnelly T D, Ditmire T, Neuman K, Perry M D, Falcone R W

    [16]

    Mendham K J, Hay N, Mason M B, Tisch J W G, Marangos J P 2001 Phys. Rev. A 64 055201

    [17]

    Dammasch M, Drr M, Eichmann U, Lenz E, Sandner W 2001 Phys. Rev. A 64 061402

    [18]

    Lebeault M A, Viallon J, Chevaleyre J, Ellert C, Normand D, Schmidt M, Sublemontier O, Guet C, Huber B 2002 Eur. Phys. J. D 20 233

    [19]

    Vozzi C, Nisoli M, Caumes J P, Sansone G, Stagira S, De-Silvestri S, Vecchiocattivi M, Bassi D, Pascolini M, Poletto L, Villoresi P, Tondello G 2005 Appl. Phys. Lett. 86 111121

    [20]

    Sun Y Q, Chen L M, Zhang L, Mao J Y, Liu F, Li D Z, Liu C, Li W C, Wang Z H, Li Y J, Wei Z Y, Zhang J 2012 Acta Phys. Sin. 61 075206 (in Chinese) [孙彦乾, 陈黎明, 张璐, 毛婧一, 刘峰, 李大章, 刘成, 李伟昌, 王兆华, 李英骏, 魏志义, 张杰 2012 61 075206]

    [21]

    Rozet J P, Cornille M, Dobosz S, Dubau J, Gauthier J C, Jacquemot S, Lamour E, Lezius M, Normand D, Schmidt M, Vernhet D 2001 Phys. Scr. T 92 113

    [22]

    Kumarappan V, Krishnamurthy M 2001 Phys. Rev. Lett. 87 085005

    [23]

    Kumarappan V, Krishnamurthy M, Mathur D 2002 Phys. Rev. A 66 033203

    [24]

    Krishnamurthy M, Mathur D, Kumarappan V 2004 Phys. Rev. A 69 033202

    [25]

    Hirokane M, Shimizu S, Hashida M, Okada S, Okihara S, Sato F, Iida T, Sakabe S 2004 Phys. Rev. A 69 063201

    [26]

    Fennel T, Bertsch G F, Meiwes-Broer K H 2004 Eur. Phys. J. D 29 367

    [27]

    Jungreuthmayer C, Geissler M, Zanghellini J, Brabec T 2004 Phys. Rev. Lett. 92 133401

    [28]

    Symes D R, Hohenberger M, Henig A, Ditmire T 2007 Phys. Rev. Lett. 98 123401

    [29]

    Li H Y, Liu J S, Wang C, Ni G Q, Li R X, Xu Z Z

    [30]

    Milchberg H M, McNaught S J, Parra E 2001 Phys. Rev. E 64 056402

    [31]

    Zhang C Y, Zhao Q, Fu L B, Liu J 2012 Acta Phys. Sin. 61 143601 (in Chinese) [张春艳, 赵清, 傅立斌, 刘杰 2012 61 143601]

    [32]

    Cheng R, Zhang C Y, Fu L B, Liu J 2015 J. Phys. B: At. Mol. Opt. Phys. 48 035601

    [33]

    Augst S, Meyerhofer D D, Strickland D, Chint S L 1991 J. Opt. Soc. Am. B 8 858

    [34]

    Last I, Jortner J 2000 Phys. Rev. A 62 013201

  • [1] Cheng Da-Zhao, Liu Cai-Yan, Zhang Chao-Ran, Qu Jia-Hui, Zhang Jing. Phase field simulation of intra/intergranular pore morphology evolution in neutron-irradiated austenitic stainless steel. Acta Physica Sinica, 2024, 73(22): 224601. doi: 10.7498/aps.73.20241353
    [2] Tian Li-Ping, Shen Ling-bin, Chen Ping, Liu Yu-zhu, Chen Lin, Hui Dan-dan, Chen Xi-ru, Zhao Wei, Xue Yan-hua. 100 fs time-resolved streak tube design based on anisotropy and post-acceleration technology. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231382
    [3] Ouyang Hao, Hu Si-Yang, Shen Man-Ling, Zhang Chen-Xi, Cheng Xiang-Ai, Jiang Tian. Polarization-dependent nonlinear optical response in GeSe2. Acta Physica Sinica, 2020, 69(18): 184212. doi: 10.7498/aps.69.20200443
    [4] Zhou Jian-Mei, Zhang Ye, Wang Hong-Nian, Yang Shou-Wen, Yin Chang-Chun. Efficient simulation of three-dimensional marine controlled-source electromagnetic response in anisotropic formation by means of coupled potential finite volume method. Acta Physica Sinica, 2014, 63(15): 159101. doi: 10.7498/aps.63.159101
    [5] Xu Zhi-Xin, Li Jia-Yun, Sun Min-Hua, Yao Xiu-Wei. Structure and dynamics in the crystallization of Ni500 nanocluster. Acta Physica Sinica, 2013, 62(18): 186101. doi: 10.7498/aps.62.186101
    [6] Si Li-Na, Guo Dan, Luo Jian-Bin. A molecular dynamics study of silica cluster cutting single crystalline silicon asperity. Acta Physica Sinica, 2012, 61(16): 168103. doi: 10.7498/aps.61.168103
    [7] Zhang Ying-Jie, Xiao Xu-Yang, Li Yong-Qiang, Yan Yun-Hui. Molecular dynamics simulation of the influence of Cu(010) substrate on the melting of supported Co-Cu bimetallic clusters. Acta Physica Sinica, 2012, 61(9): 093602. doi: 10.7498/aps.61.093602
    [8] Zhang Yun-Peng, Lin Xin, Wei Lei, Wang Meng, Peng Dong-Jian, Huang Wei-Dong. Effect of surface tension anisotropy on the growth patterns of cellulars in directional solidification. Acta Physica Sinica, 2012, 61(22): 228106. doi: 10.7498/aps.61.228106
    [9] Zhang Chun-Yan, Zhao Qing, Fu Li-Bin, Liu Jie. Anisotropic explosions of hydrogen clusters in intense femtosecond laser field. Acta Physica Sinica, 2012, 61(14): 143601. doi: 10.7498/aps.61.143601
    [10] Yan Ke-Feng, Li Xiao-Sen, Sun Li-Hua, Chen Zhao-Yang, Xia Zhi-Ming. Molecular dynamics simulation of promotion mechanism of store hydrogen of clathrate hydrate. Acta Physica Sinica, 2011, 60(12): 128801. doi: 10.7498/aps.60.128801
    [11] Chen Min. Molecular dynamics study of small helium cluster diffusion in titanium. Acta Physica Sinica, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [12] Wang Jun, Hou Qing. Molecular dynamics simulation of helium cluster growth in titanium. Acta Physica Sinica, 2009, 58(9): 6408-6412. doi: 10.7498/aps.58.6408
    [13] Chen Gui-Bo, Wang Hong-Nian, Yao Jing-Jin, Han Zi-Ye. Three-dimensional numerical modeling of marine controlled-source electromagnetic responses in a layered anisotropic seabed using integral equation method. Acta Physica Sinica, 2009, 58(6): 3848-3857. doi: 10.7498/aps.58.3848
    [14] Wan Yong, Han Wen-Juan, Liu Jun-Hai, Xia Lin-Hua, Xavier Mateos, Valentin Petrov, Zhang Huai-Jin, Wang Ji-Yang. Anisotropy in spectroscopic and laser properties of monoclinic Yb:KLu(WO4)2 crystal. Acta Physica Sinica, 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [15] Xie Zhao, Hou Qing, Wang Jun, Sun Tie-Ying, Long Xing-Gui, Luo Shun-Zhong. Coalescence of helium clusters in titanium crystals: Molecular dynamics simulation. Acta Physica Sinica, 2008, 57(8): 5159-5164. doi: 10.7498/aps.57.5159
    [16] Du Qi-Zhen, Liu Lian-Lian, Sun Jing-Bo. Numerical modeling of seismic wavefield in anisotropic viscoelastic porous medium with the pseudo-spectral method. Acta Physica Sinica, 2007, 56(10): 6143-6149. doi: 10.7498/aps.56.6143
    [17] Wang Yin, Li Peng, Ning Xi-Jing. Molecular dynamics study on self-assembly of C36 clusters. Acta Physica Sinica, 2005, 54(6): 2847-2852. doi: 10.7498/aps.54.2847
    [18] Du Qi-Zhen. Wavefield forward modeling with the pseudo-spectral method in viscoelastic and azimuthally anisotropic media. Acta Physica Sinica, 2004, 53(12): 4428-4434. doi: 10.7498/aps.53.4428
    [19] Ye Zi-Yan, Zhang Qing-Yu. Moleculardynamicssimulationsoflow energyPtclusterdeposition. Acta Physica Sinica, 2002, 51(12): 2798-2803. doi: 10.7498/aps.51.2798
    [20] Li An-Hua, Dong Sheng-Zhi, Li Wei. . Acta Physica Sinica, 2002, 51(10): 2320-2324. doi: 10.7498/aps.51.2320
Metrics
  • Abstract views:  5828
  • PDF Downloads:  181
  • Cited By: 0
Publishing process
  • Received Date:  03 April 2015
  • Accepted Date:  21 April 2015
  • Published Online:  05 August 2015

/

返回文章
返回
Baidu
map