Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Back-projection method with fast time-delay correction for photoacoustic tomography reconstruction based on a focused sound field model

Luo Xiao-Fei Wang Bo Peng Kuan Xiao Jia-Ying

Citation:

Back-projection method with fast time-delay correction for photoacoustic tomography reconstruction based on a focused sound field model

Luo Xiao-Fei, Wang Bo, Peng Kuan, Xiao Jia-Ying
PDF
HTML
Get Citation
  • Photoacoustic tomography is a rapidly developing imaging technology, which can provide structural and functional information of biological tissues. It can integrate the advantage of high optical contrast from optical imaging with those from high penetration depth from ultrasound imaging. However, the existing back-projection algorithm in photoacoustic tomography equates the ultrasonic transducer scanning around the target to a point detector, which leads to a notable tangential blur in the eccentric imaging regions, and thus seriously degrading the image quality. In this paper, we propose a novel photoacoustic tomography reconstruction algorithm, which employs a focused sound field equivalent model to overcome the sound field distortion caused by the transducer’ finite aperture effect and can quickly and effectively restore the elongated tangential resolution in the eccentric imaging regions. Simulation results show that for the target with a diameter of 5 mm and a distance of 6 mm from the rotation center, the tangential resolution is improved by at least twice. Experimental results show that this method can effectively restore the image tangential blur in the off-center regions, where the tiny structures of complex targets can be detected. This new method provides a valuable alternative to the conventional back-projection method and plays an important guiding role in the design of photoacoustic tomography systems based on circle/sphere scanning.
      Corresponding author: Xiao Jia-Ying, jiayingxiao@csu.edu.cn
    • Funds: Project supported by the Emergency Science and Technology Project of Hunan Province (Grant No. 2021_QYC_10050_26366), the Department of Science and Technology of Hunan Province, High-tech Industry Science and Technology Innovation Leading Program (Grant No. 2020SK2003), Central South University, Innovation Driven Program Team Project (Grant No. 2020CX004).
    [1]

    Wang L V, Hu S 2012 Science 335 1458Google Scholar

    [2]

    Wang L V, Yao J J 2016 Nat. Methods 13 627Google Scholar

    [3]

    Zhou Y Y, Liang S Y, Li M S, Liu C B, Lai P X, Wang L D 2020 J. Biophotonics 13 e201960229

    [4]

    Zhou Y Y, Cao F, Li H H, Huang X Z, Wei D S, Wang L D, Lai P X 2020 Biomed. Opt. Express 11 2394Google Scholar

    [5]

    Liu Y Y, Fan X, Li Y Y, Qu L L, Qin H Y, Cao Y N, Li H T 2015 Prog. Chem. 27 1459

    [6]

    Yang X M, Maurudis A, Gamelin J, Aguirre A, Zhu Q, Wang L V 2009 J. Biomed. Opt. 14 71770K

    [7]

    Xia J, Wang L H V 2014 Ieee T. Bio-Med. Eng. 61 1380Google Scholar

    [8]

    Menke J 2015 Eur. Radiol. 25 2205Google Scholar

    [9]

    Xiao J Y, Yao L, Sun Y, Sobel E S, He J S, Jiang H B 2010 Opt. Express 18 14359Google Scholar

    [10]

    Wang B, Xiao J Y, Jiang H B 2014 J Neural. Eng. 11 046013Google Scholar

    [11]

    Li M C, Liu C B, Gong X J, Zheng R Q, Bai Y Y, Xing M Y, Du X M, Liu X Y, Zeng J, Lin R Q, Zhou H C, Wang S J, Lu G M, Zhu W, Fang C H, Song L 2018 Biomed. Opt. Express 9 1408Google Scholar

    [12]

    Zhou Y, Yao J J, Wang L H V 2016 J. Biomed. Opt. 21 061007Google Scholar

    [13]

    Burgholzer P, Bauer-Marschallinger J, Grun H, Haltmeier M, Paltauf G 2007 Inverse Probl. 23 S65Google Scholar

    [14]

    Xu M H, Wang L H V 2005 Phys. Rev. E 71 016706Google Scholar

    [15]

    Roitner H, Haltmeier M, Nuster R, O'Leary D P, Berer T, Paltauf G, Grun H, Burgholzer P 2014 J. Biomed. Opt. 19 056011Google Scholar

    [16]

    Li M L, Tseng Y C, Cheng C C 2010 Opt. Express 18 26285Google Scholar

    [17]

    Xu M H, Wang L V 2003 Phys. Rev. E 67 056605Google Scholar

    [18]

    Li C H, Wang L V 2008 Appl. Phys. Lett. 93 033902Google Scholar

    [19]

    Drozdov G, Rosenthal A 2017 Ieee T. Med. Imaging. 36 301Google Scholar

    [20]

    Zhang C, Wang Y Y 2008 J. Opt. Soc. Am. A. 25 2436Google Scholar

    [21]

    Cai D, Li Z F, Li Y, Guo Z D, Chen S L 2017 Opt. Express 25 1421Google Scholar

    [22]

    Luo X F, Xiao J Y, Wang C C, Wang B 2021 Photonics 8 356Google Scholar

  • 图 1  基于二维环形扫描的PAT系统

    Figure 1.  2D circular-scanning-based PAT system.

    图 2  不同重建模型的反投影算法示意图 (a)点状换能器模型; (b)无限大小换能器模型; (c)聚焦声场换能器模型

    Figure 2.  Schematics of the back-projection algorithm of different reconstruction models: (a) The model for point-like ultrasonic transducer; (b) the model for ultrasonic transducer with infinite element size; (c) the model for ultrasonic transducer with focused sound field.

    图 3  不同重建模型下换能器中心频率变化的仿真结果 (a)—(d)当中心频率分别为1 MHz, 3 MHz, 5 MHz和10 MHz时, 用传统点模型方法得到的结果; (e)—(h)无限大平面模型的相应结果; (i)—(l)聚焦声场模型的相应结果. 所采用的平面换能器直径为6 mm, 7个点的位置分别为–6 mm, –4 mm, –2 mm, 0 mm, 2 mm, 4 mm和6 mm. 在模拟数据中加入5%的噪声, 所有图像的振幅都归一化为1

    Figure 3.  Simulation results with different reconstruction methods when the transducer central frequency varies: (a)–(d) The results with the conventional point-like method when the central frequency are 1 MHz, 3 MHz, 5 MHz and 10 MHz, respectively; (e)–(h) the corresponding results with the model of the infinite element size; (i)–(l) the corresponding results with the model of focused sound field. The diameter of the employed planar transducer was 6 mm, and the locations of the seven points are –6 mm, –4 mm, –2 mm, 0 mm, 2 mm, 4 mm, and 6 mm, respectively. The simulated data were added with 5% noise, and the amplitudes of all the images were normalized to 1 for comparison.

    图 4  由3 MHz中心频率超声换能器模拟得到的4个目标的横向剖面, 红线、蓝线和绿线分别表示点状换能器模型、无限大小换能器模型和聚焦声场换能器模型的结果 (a) 0 mm; (b) 2 mm; (c) 4 mm; (d) 6 mm

    Figure 4.  The simulated lateral profiles for the four targets obtained from 3 MHz central frequency ultrasonic transducer. The locations of the four points are 0 mm (a), 2 mm (b), 4 mm (c), and 6 mm (d), respectively. The red, blue and green lines represent the results from the conventional point-like model, the infinite element size model, and the focused sound field model, respectively.

    图 5  PAT系统和超声换能器的传输特性示意图 (a)二维PAT系统图; (b)超声换能器光声脉冲响应信号; (c)超声换能器光声频谱图

    Figure 5.  Schematic of the PAT system and transmit characteristic of the transducer: (a) Schematic of the 2D PAT system; (b) the photoacoustic impulse waveform of the transducer; (c)spectral diagram of the transducer.

    图 6  不同重建算法对点目标成像的实验结果 (a)仿体照片; (b)8个点目标的切向分辨率分布图; (c)点状模型BP算法; (d)无限大小模型BP算法; (e)聚焦声场模型BP算法

    Figure 6.  The experimental results of point target imaging with different reconstruction algorithms: (a) The photograph of phantom; (b) tangential resolution distributions of eight point targets; (c) the BP method of point-like model; (d) the BP method of infinite element size model; (e) the BP method of focused sound field model.

    图 7  不同重建算法对小鼠模型成像的实验结果 (a)小鼠脑图片; (b)点状模型BP算法; (c)无限大小模型BP算法; (d) 聚焦声场模型BP算法

    Figure 7.  The experimental results of mouse brain imaging with different reconstruction algorithms: (a) The photograph of the mouse brain; (b) the BP method of point-like model; (c) the BP method of infinite element size model; (d) the BP method of focused sound field model.

    表 1  Table 1 不同算法和换能器频率下偏离中心6 mm目标的FWHM和SNR

    Table 1.  The FWHM and SNR results of 6 mm off-center target with different methods and transducer frequencies.

    中心频率点状无限大小聚焦声场
    1 MHz
    FWHM/mm1.851.050.85
    SNR/dB36.0626.1736.80
    3 MHz
    FWHM/mm1.251.040.42
    SNR/dB28.7827.2933.87
    5 MHz
    FWHM/mm0.930.820.38
    SNR/dB26.4224.0728.09
    10 MHz
    FWHM/mm0.450.410.25
    SNR/dB22.9016.7525.31
    DownLoad: CSV
    Baidu
  • [1]

    Wang L V, Hu S 2012 Science 335 1458Google Scholar

    [2]

    Wang L V, Yao J J 2016 Nat. Methods 13 627Google Scholar

    [3]

    Zhou Y Y, Liang S Y, Li M S, Liu C B, Lai P X, Wang L D 2020 J. Biophotonics 13 e201960229

    [4]

    Zhou Y Y, Cao F, Li H H, Huang X Z, Wei D S, Wang L D, Lai P X 2020 Biomed. Opt. Express 11 2394Google Scholar

    [5]

    Liu Y Y, Fan X, Li Y Y, Qu L L, Qin H Y, Cao Y N, Li H T 2015 Prog. Chem. 27 1459

    [6]

    Yang X M, Maurudis A, Gamelin J, Aguirre A, Zhu Q, Wang L V 2009 J. Biomed. Opt. 14 71770K

    [7]

    Xia J, Wang L H V 2014 Ieee T. Bio-Med. Eng. 61 1380Google Scholar

    [8]

    Menke J 2015 Eur. Radiol. 25 2205Google Scholar

    [9]

    Xiao J Y, Yao L, Sun Y, Sobel E S, He J S, Jiang H B 2010 Opt. Express 18 14359Google Scholar

    [10]

    Wang B, Xiao J Y, Jiang H B 2014 J Neural. Eng. 11 046013Google Scholar

    [11]

    Li M C, Liu C B, Gong X J, Zheng R Q, Bai Y Y, Xing M Y, Du X M, Liu X Y, Zeng J, Lin R Q, Zhou H C, Wang S J, Lu G M, Zhu W, Fang C H, Song L 2018 Biomed. Opt. Express 9 1408Google Scholar

    [12]

    Zhou Y, Yao J J, Wang L H V 2016 J. Biomed. Opt. 21 061007Google Scholar

    [13]

    Burgholzer P, Bauer-Marschallinger J, Grun H, Haltmeier M, Paltauf G 2007 Inverse Probl. 23 S65Google Scholar

    [14]

    Xu M H, Wang L H V 2005 Phys. Rev. E 71 016706Google Scholar

    [15]

    Roitner H, Haltmeier M, Nuster R, O'Leary D P, Berer T, Paltauf G, Grun H, Burgholzer P 2014 J. Biomed. Opt. 19 056011Google Scholar

    [16]

    Li M L, Tseng Y C, Cheng C C 2010 Opt. Express 18 26285Google Scholar

    [17]

    Xu M H, Wang L V 2003 Phys. Rev. E 67 056605Google Scholar

    [18]

    Li C H, Wang L V 2008 Appl. Phys. Lett. 93 033902Google Scholar

    [19]

    Drozdov G, Rosenthal A 2017 Ieee T. Med. Imaging. 36 301Google Scholar

    [20]

    Zhang C, Wang Y Y 2008 J. Opt. Soc. Am. A. 25 2436Google Scholar

    [21]

    Cai D, Li Z F, Li Y, Guo Z D, Chen S L 2017 Opt. Express 25 1421Google Scholar

    [22]

    Luo X F, Xiao J Y, Wang C C, Wang B 2021 Photonics 8 356Google Scholar

  • [1] Xiang Peng-Cheng, Cai Cong-Bo, Wang Jie-Chao, Cai Shu-Hui, Chen Zhong. Super-resolved reconstruction method for spatiotemporally encoded magnetic resonance imaging based on deep neural network. Acta Physica Sinica, 2022, 71(5): 058702. doi: 10.7498/aps.71.20211754
    [2] Yu Jun-Jin, Guo Xing-Yi, Sui Yi-Hui, Song Jian-Ping, Ta De-An, Mei Yong-Feng, Xu Kai-Liang. Ultrafast ultrasound localization microscopy method for spinal cord mircovasculature imaging. Acta Physica Sinica, 2022, 71(17): 174302. doi: 10.7498/aps.71.20220629
    [3] Sui Yi-Hui, Guo Xing-Yi, Yu Jun-Jin, Alexander A. Solovev, Ta De-An, Xu Kai-Liang. Accelerating super-resolution ultrasound localization microscopy using generative adversarial net. Acta Physica Sinica, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [4] Lü Hao-Chang, Zhao Yun-Chi, Yang Guang, Dong Bo-Wen, Qi Jie, Zhang Jing-Yan, Zhu Zhao-Zhao, Sun Yang, Yu Guang-Hua, Jiang Yong, Wei Hong-Xiang, Wang Jing, Lu Jun, Wang Zhi-Hong, Cai Jian-Wang, Shen Bao-Gen, Yang Feng, Zhang Shen-Jin, Wang Shou-Guo. High resolution imaging based on photo-emission electron microscopy excited by deep ultraviolet laser. Acta Physica Sinica, 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [5] Gao Qiang, Li Xiao-Qiu, Zhou Zhi-Peng, Sun Lei. Far-field super-resolution scanning imaging based on fractal resonator. Acta Physica Sinica, 2019, 68(24): 244102. doi: 10.7498/aps.68.20190620
    [6] Xi Xiao-Qi, Han Yu, Li Lei, Yan Bin. Tilting fan beam back-projection filtration algorithm for local reconstruction in helical cone-beam computed tomography. Acta Physica Sinica, 2019, 68(8): 088701. doi: 10.7498/aps.68.20190055
    [7] Gao Qiang, Wang Xiao-Hua, Wang Bing-Zhong. Far-field super-resolution imaging based on wideband stereo-metalens. Acta Physica Sinica, 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [8] Tang Tao, Zhao Chen, Chen Zhi-Yan, Li Peng, Ding Zhi-Hua. Ultrahigh-resolution optical coherence tomography and its application in inspection of industrial materials. Acta Physica Sinica, 2015, 64(17): 174201. doi: 10.7498/aps.64.174201
    [9] Li Jie, Zhu Jing-Ping, Zhang Yun-Yao, Liu Hong, Hou Xun. Spectral zooming birefringent imaging spectrometer. Acta Physica Sinica, 2013, 62(2): 024205. doi: 10.7498/aps.62.024205
    [10] Zhang Feng, Yan Bin, Wang Xian-Chao, Jiang Hua, Wei Xing. An efficient reconstruction algorithm for flat object based on backprojection filtration method in circular half-cover computed tomography. Acta Physica Sinica, 2013, 62(16): 168702. doi: 10.7498/aps.62.168702
    [11] Zhang Wen-Xi, Xiang Li-Bin, Kong Xin-Xin, Li Yang, Wu Zhou, Zhou Zhi-Sheng. Resolution of coherent field imaging technique. Acta Physica Sinica, 2013, 62(16): 164203. doi: 10.7498/aps.62.164203
    [12] Wang Fang, Zhao Xing, Yang Yong, Fang Zhi-Liang, Yuan Xiao-Cong. Comparison of the resolutions of integral imaging three-dimensional display based on human vision. Acta Physica Sinica, 2012, 61(8): 084212. doi: 10.7498/aps.61.084212
    [13] Lu Jing, Li Hao, He Yi, Shi Guo-Hua, Zhang Yu-Dong. Superresolution in adaptive optics confocal scanning laser ophthalmoscope. Acta Physica Sinica, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [14] Dai Qiu-Sheng, Qi Yu-Jin. Spatial resolution of pinhole single photon emission computed tomography imaging. Acta Physica Sinica, 2010, 59(2): 1357-1365. doi: 10.7498/aps.59.1357
    [15] Zhang Xiao-Zheng, Bi Chuan-Xing, Xu Liang, Chen Xin-Zhao. Resolution enhancement of nearfield acoustic holography by the wave superposition approach. Acta Physica Sinica, 2010, 59(8): 5564-5571. doi: 10.7498/aps.59.5564
    [16] Wu Dan, Tao Chao, Liu Xiao-Jun. Study of the resolution of limited-view photoacoustic tomography. Acta Physica Sinica, 2010, 59(8): 5845-5850. doi: 10.7498/aps.59.5845
    [17] Zhao Gui-Min, Lu Ming-Zhu, Wan Ming-Xi, Fang Li. Study of vibro-acoustography with high spatial resolution based on sector array transducers. Acta Physica Sinica, 2009, 58(9): 6596-6603. doi: 10.7498/aps.58.6596
    [18] Xiang Liang-Zhong, Xing Da, Guo Hua, Yang Si-Hua. High resolution fast digital photoacoustic CT for breast cancer diagnosis. Acta Physica Sinica, 2009, 58(7): 4610-4617. doi: 10.7498/aps.58.4610
    [19] Chen Zhan-Xu, Tang Zhi-Lie, Wan Wei, He Yong-Heng. Photoacoustic tomography imaging based on an acoustic lens imaging system. Acta Physica Sinica, 2006, 55(8): 4365-4370. doi: 10.7498/aps.55.4365
    [20] Liu Li, Deng Xiao-Qiang, Wang Gui-Ying, Xu Zhi-Zhan. . Acta Physica Sinica, 2001, 50(1): 48-51. doi: 10.7498/aps.50.48
Metrics
  • Abstract views:  4576
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  31 October 2021
  • Accepted Date:  06 December 2021
  • Available Online:  26 January 2022
  • Published Online:  05 April 2022

/

返回文章
返回
Baidu
map