-
Electroosmotic flow in a confined domain transport space in microfluidics by modifying the double electric layer effect at the fluid-solid interface. In order to increase the fluid to generate high shear rate in the channel, which drives the formation of large slip velocity at the interface to increase the fluid transportation in the channel. In this paper, molecular dynamics simulations are used to construct an electroosmotic flow nanochannel model, and the fluid flow characteristics and wall slip reduction properties within graphene charged-wall nanochannels are investigated. The results show that the electroosmotic flow changes the structure of the bilayer to increase the mobility of its diffusion layer; at the same time, the ions in the diffusion layer under the action of the applied electric field undergo directional migration and drive the overall fluid flow through the viscous effect, which enhances the mobility performance. After the introduction of ions, Na+ is adsorbed at the wall surface, which weakens the adsorption force between the fluid and the wall surface and enhances the driving force of the fluid in the confined domain space, thus increasing the slip length and flow rate.
Finally, by modulating the charge size of the upper and lower wall surfaces and thus forming asymmetric channel wall charges, the resulting electric field gradient superimposed on the applied electric field further enhances the driving force of the ions and alters the distribution of the adsorbed layer of Na⁺ and the migration behavior of Cl-, thus increasing the transport of the solution in the channel. Therefore, in this paper, by proposing a method to realize the ultrafast transport of solution in the channel by modulating the asymmetric wall charge of graphene, the slip reduction effect of the electroosmotic flow of solution in the graphene channel is successfully realized. A theoretical basis is provided for the fast and energy-saving transportation of microfluidics in the nano-limited space.-
Keywords:
- Electroosmotic flow /
- Wall charge /
- Slip rent reduction /
- Bilayer
-
[1] Schutzius T M, Jung S, Maitra T, Graeber G, Poulikakos D 2015Nature. 527 82
[2] Liu Q, Xu B 2015Langmuir 31 9070
[3] Zhang Z, Wang Y, Ding M, Mao D, Chen M, Han Y, Xue X 2023J. MOL. LIQ. 380 121698
[4] Song Y Y, Liu Y, Jiang H B, Li S Y, Kaya C, Stegmaier T, Han Z W, Ren L Q 2017Sci. Rep. 7 12056
[5] Fabio P, Wenjie S 2018Nature. Nanotechnology. 13 633
[6] Zhang Y S, Qi Z Y, Ding M M, Li M L, Shi T F 2024Chin. J. Polym. Sci. 42 2048
[7] Liu B, Wu R, Baimova J A, Wu H, Law A W K, Dmitriev S V, Zhou K 2016Phys. Chem. Chem. Phys. 181886
[8] Giovambattista N, Debenedetti P G, Rossky P J 2007J. Phys. Chem. B. 111 9581
[9] Mei Tao, Chen Zhan-Xiu, Yang Li, Wang Kun, Miao Rui-Can 2019Acta Phys. Sin. 68 094701(in Chinese)[梅涛,陈占秀,杨历,王坤,苗瑞灿2019 68 094701]
[10] Basu, Mainak Joshi, Vedant P. Das, Soumen DasGupta, Sunando 2021J. Electrostat. 109 103541
[11] Yang Hui-Hui, Gao Feng, Dai Ming-Jin, Hu Ping-An 2017Acta Phys. Sin. 66 216804(in Chinese)[杨慧慧,高峰,戴明金,胡平安2017 66 216804]
[12] Celebi A T, Barisik M, Beskok A 2017J. Chem. Phys.147 164311
[13] Celebi A T, Barisik M, Beskok A 2018Microfluid Nanofluid. 227
[14] Ghorbanian J, Beskok A 2016Microfluidics and Nanofluidics. 20 121
[15] Ghorbanian J, Celebi A T, Beskok A 2016J. Chem. Phys. 145 184109
[16] Zhang Cheng-Bin, Xu Zhao-Lin, Chen Yong-Ping 2014Acta Phys. Sin. 63 214706(in Chinese)[张程宾,许兆林,陈永平2014 63 214706]
[17] Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Head-Gordon T 2004J. Chem. Phys. 120 9665
[18] Stuart S J, Tutein A B, Harrison J A 2000J. Chem. Phys. 112 6472
[19] Patra M, Karttunen M 2004J. Comput. Chem. 25 678
[20] Bongrand P 2018Physical Basis of Cell-Cell Adhesion. 37283
[21] Hoover W G 1985Phys. Rev. A. 31 1695
[22] Binder K, Horbach J, Kob W, Paul W, Varnik F 2004J. Phys.:Condens. Matter. 16 S429
[23] Liu B, Wu R, Baimova J A, Wu H, Law A W K, Dmitriev S V, Zhou K 2016Phys. Chem. Chem. Phys. 18 1886
[24] Hummer G, Rasaiah J C, Noworyta J P 2001Nature. 414 188
[25] Yeh L H, Xue S, Joo S W, Qian S, Hsu J P 2012J. Phys. Chem. C. 116 4209
[26] Snapp P, Kim J M, Cho C, Leem J, Haque M F, Nam S 2020NPG Asia Mater 12 22
[27] Telles I M, Bombardelli R K, dos Santos A P, Levin Y 2021J. MOL. LIQ. 336 116263
[28] Huang S, Rahmani A M, Singletary T, Colosqui C E 2020COLLOID. SURFACE. A. 603 125100.
Metrics
- Abstract views: 61
- PDF Downloads: 1
- Cited By: 0