Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrorotation manipulation of microparticles induced by torque and electroosmotic slip in microsystem

Jiang Hong-Yuan Ren Yu-Kun Tao Ye

Citation:

Electrorotation manipulation of microparticles induced by torque and electroosmotic slip in microsystem

Jiang Hong-Yuan, Ren Yu-Kun, Tao Ye
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Electrorotation is an effective technique to characterize the electrical properties of dispersed particles. For the low Reynolds number microsystem, the mechanism of the electrorotation of microparticles induced by torque was analyzed based on the Maxwell-Wagner polarization. Characteristic frequency corresponding to the peak value of the electrorotation speed was deduced and the effect of the relaxation time on the particles' electrorotation direction was analyzed by the simulation of the electrorotation speed induced by the torque. The mechanism of the electrorotation of the microparticles induced by electroosmotic slip was qualitative analyzed based on the double layer and the idea about the gold surface being favorable to the electrorotation was proposed. Experiments on the electrorotation of the polystyrene with the carboxy surface and gold modified surface were performed, respectively. The results show that, the direction of the electrorotation of polystyrene spheres with carboxy surface is opposite to the electric field and, the corresponding frequency is higher with the torque playing the leading role. On the other hand, direction of the rotation of polystyrene spheres with the gold surface is homodromous with the electric field and the corresponding frequency is lower with the electroosmotic slip playing the leading rose.
    [1]

    Morgan H, Green N G 2002 AC Electrokinetics: colloids and nanoparticles (Baldock: Research Studies Press Ltd.) p67

    [2]

    Stone H, Stroock A, Ajdari A 2004 Annu. Rev. Fluid Mech. 36 381

    [3]

    Ren Y K, Yan H, Jiang H Y, Gu J Z, Ramos A 2009 Chin. Phys. B 18 4349

    [4]

    Hardt S, Schnfeld F 2007 Microfluidic Technologies for Miniaturized Analysis Systems (New York: Springer-Verlag.)

    [5]

    Ramos A, Morgan H, Green N G, Castellanos A 1998 J. Phys. D: Appl. Phys. 31 2338

    [6]

    Jiang H Y, Ren Y K, Ao H R 2008 Chin. Phys. B 17 4541

    [7]

    Li B X, Ye M Y, Chu Q Y, Yu J 2007 Acta Phys. Sin. 56 3447 (in Chinese) [李宝兴、 叶美英、 褚巧燕、 俞 健 2007 56 3447]

    [8]

    Liu H W, Ma D M, Shi W, Tian L Q, Wang X M, Xie W P, Xu M, Zhou L J 2009 Acta Phys. Sin. 58 1219 (in Chinese)[刘宏伟、 马德明、 施 卫、 田立强、 王馨梅、 谢卫平、 徐 鸣、 周良骥 2009 58 1219]

    [9]

    Hou L, Liu Z, Shi W, Wang X M, Xu M 2008 Acta Phys. Sin. 57 7185 (in Chinese) [侯 磊、 刘 峥、 施 卫、 王馨梅、 徐 鸣 2008 57 7185]

    [10]

    Ren Y K, Jiang H Y, Yang H K, Ramos A, Garcia-Sanchez P 2009 J. Electrostatics 67 372

    [11]

    Li F M, Liu X, Lu X Z, Qian S X, Wang G M, Wang W J, Xu J H 2000 Acta Phys. Sin. 49 544 (in Chinese)[李富铭、 刘 秀、 陆兴泽、 钱士雄、 王恭明、 王文军、 徐建华 2000 49 544]

    [12]

    Deng L Z, Xia Y, Yin J P 2007 Chin. Phys. 16 707

    [13]

    Ren Y K, Ao H R, Gu J Z, Jiang H Y, Ramos A 2009 Acta Phys. Sin. 58 7869 (in Chinese) [任玉坤、 敖宏瑞、 顾建忠、 姜洪源、Ramos A 2009 58 7869]

    [14]

    Amold W M, Zimmermann U 1988 J. Electrostatics 21 151

    [15]

    Amold W M, Schwan H P, Zimmermann U 1987 J. Phys. Chem. 91 5093

    [16]

    Burt J P H, Chan K L, Dawson D, Patron A, Pething R 1996 Ann. Biol. Clin. 54 253

    [17]

    Huang G P, Yu K W, Gu G Q 2002 Phys. Rev. E 65 021401

    [18]

    Dolinsky Yu, Elperin T 2009 Phys. Rev. E 80 066607

    [19]

    Kakutani T, Shibatani S, Sugai M 1993 Bioelectrochem Bioenerg 92 67

    [20]

    Falokun C D, Markx G H 2007 J. Electrostatics 65 475

    [21]

    Yang C Y, Lei U 2007 J. Appl. Phys. 102 094702

    [22]

    Gross C, Shilov V N 1996 J. Phys. Chem. 100 1771

    [23]

    Gross C, Shilov V N 1998 Colliods Surfaces A: Physicochem. Eng. Aspects 140 199

    [24]

    Green N G, Ramos A, Gonzalez A, Morgan H, Castellanos A 2000 Phys. Rev. E 61 4011

    [25]

    Pohl H A 1978 Dielectrophoresis (Cambridge: Cambridge University Press)

    [26]

    Minoura I, Muto E 2006 Biophys. J. 90 3739

    [27]

    Georgieva R, Neu B, Shilov V M, Knippel E, Budde A, Latza R, Donath E, Kiesewetter H, Baumler H 1998 Biophys. J. 74 2114

    [28]

    Vykoukal J, Vykoukal D M, Sharma S, Becker F F, Gascoyne P R C 2003 Langmuir 19 2425

    [29]

    Lim J, Eggeman A, Lanni F, Tilton R D, Majetich S 2008 Adv. Mater. 20 1721

    [30]

    Lian M, Islam N, Wu J 2007 IET Nanobiotecnol. 1(3) 36

  • [1]

    Morgan H, Green N G 2002 AC Electrokinetics: colloids and nanoparticles (Baldock: Research Studies Press Ltd.) p67

    [2]

    Stone H, Stroock A, Ajdari A 2004 Annu. Rev. Fluid Mech. 36 381

    [3]

    Ren Y K, Yan H, Jiang H Y, Gu J Z, Ramos A 2009 Chin. Phys. B 18 4349

    [4]

    Hardt S, Schnfeld F 2007 Microfluidic Technologies for Miniaturized Analysis Systems (New York: Springer-Verlag.)

    [5]

    Ramos A, Morgan H, Green N G, Castellanos A 1998 J. Phys. D: Appl. Phys. 31 2338

    [6]

    Jiang H Y, Ren Y K, Ao H R 2008 Chin. Phys. B 17 4541

    [7]

    Li B X, Ye M Y, Chu Q Y, Yu J 2007 Acta Phys. Sin. 56 3447 (in Chinese) [李宝兴、 叶美英、 褚巧燕、 俞 健 2007 56 3447]

    [8]

    Liu H W, Ma D M, Shi W, Tian L Q, Wang X M, Xie W P, Xu M, Zhou L J 2009 Acta Phys. Sin. 58 1219 (in Chinese)[刘宏伟、 马德明、 施 卫、 田立强、 王馨梅、 谢卫平、 徐 鸣、 周良骥 2009 58 1219]

    [9]

    Hou L, Liu Z, Shi W, Wang X M, Xu M 2008 Acta Phys. Sin. 57 7185 (in Chinese) [侯 磊、 刘 峥、 施 卫、 王馨梅、 徐 鸣 2008 57 7185]

    [10]

    Ren Y K, Jiang H Y, Yang H K, Ramos A, Garcia-Sanchez P 2009 J. Electrostatics 67 372

    [11]

    Li F M, Liu X, Lu X Z, Qian S X, Wang G M, Wang W J, Xu J H 2000 Acta Phys. Sin. 49 544 (in Chinese)[李富铭、 刘 秀、 陆兴泽、 钱士雄、 王恭明、 王文军、 徐建华 2000 49 544]

    [12]

    Deng L Z, Xia Y, Yin J P 2007 Chin. Phys. 16 707

    [13]

    Ren Y K, Ao H R, Gu J Z, Jiang H Y, Ramos A 2009 Acta Phys. Sin. 58 7869 (in Chinese) [任玉坤、 敖宏瑞、 顾建忠、 姜洪源、Ramos A 2009 58 7869]

    [14]

    Amold W M, Zimmermann U 1988 J. Electrostatics 21 151

    [15]

    Amold W M, Schwan H P, Zimmermann U 1987 J. Phys. Chem. 91 5093

    [16]

    Burt J P H, Chan K L, Dawson D, Patron A, Pething R 1996 Ann. Biol. Clin. 54 253

    [17]

    Huang G P, Yu K W, Gu G Q 2002 Phys. Rev. E 65 021401

    [18]

    Dolinsky Yu, Elperin T 2009 Phys. Rev. E 80 066607

    [19]

    Kakutani T, Shibatani S, Sugai M 1993 Bioelectrochem Bioenerg 92 67

    [20]

    Falokun C D, Markx G H 2007 J. Electrostatics 65 475

    [21]

    Yang C Y, Lei U 2007 J. Appl. Phys. 102 094702

    [22]

    Gross C, Shilov V N 1996 J. Phys. Chem. 100 1771

    [23]

    Gross C, Shilov V N 1998 Colliods Surfaces A: Physicochem. Eng. Aspects 140 199

    [24]

    Green N G, Ramos A, Gonzalez A, Morgan H, Castellanos A 2000 Phys. Rev. E 61 4011

    [25]

    Pohl H A 1978 Dielectrophoresis (Cambridge: Cambridge University Press)

    [26]

    Minoura I, Muto E 2006 Biophys. J. 90 3739

    [27]

    Georgieva R, Neu B, Shilov V M, Knippel E, Budde A, Latza R, Donath E, Kiesewetter H, Baumler H 1998 Biophys. J. 74 2114

    [28]

    Vykoukal J, Vykoukal D M, Sharma S, Becker F F, Gascoyne P R C 2003 Langmuir 19 2425

    [29]

    Lim J, Eggeman A, Lanni F, Tilton R D, Majetich S 2008 Adv. Mater. 20 1721

    [30]

    Lian M, Islam N, Wu J 2007 IET Nanobiotecnol. 1(3) 36

  • [1] Yu Xin-Ru, Cui Ji-Feng, Chen Xiao-Gang, Mu Jiang-Yong, Qiao Yu-Ran. Time period electroosmotic flow of a class of incompressible micropolar fluid in parallel plate microchannels under high Zeta potential. Acta Physica Sinica, 2024, 73(16): 164701. doi: 10.7498/aps.73.20240591
    [2] Mu Jiang-Yong, Cui Ji-Feng, Chen Xiao-Gang, Zhao Yi-Kang, Tian Yi-Lin, Yu Xin-Ru, Yuan Man-Yu. Electroosmotic flow and heat transfer characteristics of a class of biofluids in microchannels at high Zeta potential. Acta Physica Sinica, 2024, 73(6): 064701. doi: 10.7498/aps.73.20231685
    [3] He Hao-Bin, Lan Xiu-Kai, Ji Yang. Spin-orbit torque efficiency improved by BiSePt alloy. Acta Physica Sinica, 2023, 72(13): 137201. doi: 10.7498/aps.72.20230285
    [4] Zhang Tian-Ge, Ren Mei-Rong, Cui Ji-Feng, Chen Xiao-Gang, Wang Yi-Dan. Rotational electroosmotic slip flow of power-law fluid at high zeta potential in variable-section microchannel. Acta Physica Sinica, 2022, 71(13): 134701. doi: 10.7498/aps.71.20212327
    [5] Duan Juan, Chen Yao-Qin, Zhu Qing-Yong. Electroosmotically-driven flow of power-law fluid in a micro-diffuser. Acta Physica Sinica, 2016, 65(3): 034702. doi: 10.7498/aps.65.034702
    [6] Wang Xiao-Juan, Song Mei, Guo Shi-Ze, Yang Zi-Long. Information spreading in correlated microblog reposting network based on directed percolation theory. Acta Physica Sinica, 2015, 64(4): 044502. doi: 10.7498/aps.64.044502
    [7] Jiang Yu-Ting, Qi Hai-Tao. Electro-osmotic slip flow of Eyring fluid in a slit microchannel. Acta Physica Sinica, 2015, 64(17): 174702. doi: 10.7498/aps.64.174702
    [8] Guo Yuan-Yuan, Hao Jian-Long, Xue Hai-Bin, Liu Zhe-Jie. Effect of the intrinsic in-plane shape anisotropy on the oscillation characteristics of zero-field spin torque oscillator. Acta Physica Sinica, 2015, 64(19): 198502. doi: 10.7498/aps.64.198502
    [9] Hao Jian-Hong, Wang Xiao-Wei, Zhang Heng. Chaotic robust control of permanent magnet synchronous motor system under uncertain factors. Acta Physica Sinica, 2014, 63(22): 220203. doi: 10.7498/aps.63.220203
    [10] Yang Zhi-Qiang, Wu Zhen-Sen, Zhang Geng, Gong Lei. Recognition technology for obtaining micro-motion characteristics of rotating rough targets. Acta Physica Sinica, 2014, 63(21): 210301. doi: 10.7498/aps.63.210301
    [11] Guo Zi-Zheng, Deng Hai-Dong, Huang Jia-Sheng, Xiong Wan-Jie, Xu Chu-Dong. Spin-torque critical current tuned by stress. Acta Physica Sinica, 2014, 63(13): 138501. doi: 10.7498/aps.63.138501
    [12] Hou Li-Kai, Ren Yu-Kun, Jiang Hong-Yuan. Electrorotation characteristics of gold-coated SU-8 microrods at low frequency. Acta Physica Sinica, 2013, 62(20): 200702. doi: 10.7498/aps.62.200702
    [13] Liu Quan-Sheng, Yang Lian-Gui, Su Jie. Transient electroosmotic flow of general Jeffrey fluid between two micro-parallel plates. Acta Physica Sinica, 2013, 62(14): 144702. doi: 10.7498/aps.62.144702
    [14] Chang Long, Jian Yong-Jun. Time periodic electroosmotic flow of the generalized Maxwell fluids between two micro-parallel plates with high Zeta potential. Acta Physica Sinica, 2012, 61(12): 124702. doi: 10.7498/aps.61.124702
    [15] Jiang Hong-Yuan, Li Shan-Shan, Hou Zhen-Xiu, Ren Yu-Kun, Sun Yong-Jun. Effect of asymmetrical micro electrode surface topography on alternating current electroosmosis flow rate. Acta Physica Sinica, 2011, 60(2): 020702. doi: 10.7498/aps.60.020702
    [16] Ren Yu-Kun, Ao Hong-Rui, Gu Jian-Zhong, Jiang Hong-Yuan, Antonio Ramos. Microparticles manipulation based on dielectrophoresis in microsystem. Acta Physica Sinica, 2009, 58(11): 7869-7877. doi: 10.7498/aps.58.7869
    [17] Zheng Shi-Wang, Fu Jing-Li, Li Xian-Hui. Momentum-dependent symmetries and non-Noether conserved quantities for mechanico-electrical systems. Acta Physica Sinica, 2005, 54(12): 5511-5516. doi: 10.7498/aps.54.5511
    [18] TANG GUI-DE, HAN BAO-SHAN. DETERMINATION OF THE ANISOTROPY CONSTANTS Ku AND K1 OF GARNET BUBBLE FILMS BY MEASURING TORQUE CURVES. Acta Physica Sinica, 1990, 39(3): 479-485. doi: 10.7498/aps.39.479
    [19] HO KAI-YUAN, WU PAO-CHING. MAGNETIC TORQUE STUDIES OF THE ANISOTROPY OF A GRAIN ORIENTED NICKEL-IRON ALLOY. Acta Physica Sinica, 1963, 19(11): 717-726. doi: 10.7498/aps.19.717
    [20] ZHANG FU-FAN. APPROXIMATE SOLUTION OF A ROTATING RECTANGULAR PLATE. Acta Physica Sinica, 1953, 9(4): 294-301. doi: 10.7498/aps.9.294
Metrics
  • Abstract views:  8403
  • PDF Downloads:  858
  • Cited By: 0
Publishing process
  • Received Date:  04 April 2010
  • Accepted Date:  17 May 2010
  • Published Online:  15 January 2011

/

返回文章
返回
Baidu
map