搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微平行管道内Eyring流体的电渗滑移流动

姜玉婷 齐海涛

引用本文:
Citation:

微平行管道内Eyring流体的电渗滑移流动

姜玉婷, 齐海涛

Electro-osmotic slip flow of Eyring fluid in a slit microchannel

Jiang Yu-Ting, Qi Hai-Tao
PDF
导出引用
  • 研究了微平行管道内非牛顿流体––Eyring 流体在外加电场力和压力作用下的电渗流动. 在考虑微尺度效应, 电场作用, 非牛顿特性, 滑移边界等情况下, 建立Eyring流体在微平行管道内电渗流动的力学模型. 通过解线性Possion-Boltzmann方程和Cauchy动量方程, 给出Eyring 流体速度分布的精确解和近似解析解, 并探讨了上述因素对电渗流动的影响. 将电场力和压力对于Eyring流体电渗流动的速度分布的影响进行了比较分析, 得到有意义的结果.
    The electro-osmotic flow of a non-Newtonian fluid in a slit micro-channel under the Navier's slip boundary condition is investigated. The Eyring constitutive relationship model is adopted to describe the non-Newtonian characteristics of the flow driven by the applied electric field force and pressure. In consideration of the micro-scale effects, electric field, non-Newtonian behavior and slip boundary condition, a mechanical model is built and the effects of these factors on the flow are studied. Analytical expressions are derived for the electric potential and velocity profile by solving the linearized Poisson-Boltzmann equation and the modified Cauchy equation. Approximate expressions of the velocity distribution are also given and discussed. Furthermore, by comparing the effects of electric force with that of pressure on the velocity distribution, some meaningful conclusions are drawn from the obtained graphics.
      通信作者: 齐海涛, htqi@sdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11102102, 11472161)、山东省自然科学基金(批准号:ZR2015AM011)和山东大学自主创新基金(批准号: 2013ZRYQ002)资助的课题.
      Corresponding author: Qi Hai-Tao, htqi@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11102102, 11472161), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2015AM011), and the Independent Innovation Foundation of Shandong University, China (Grant No. 2013ZRYQ002).
    [1]

    Hunter R J 1981 Zeta Potential in Colloid Science (New York: Academic Press) p15

    [2]

    Stone H A, Stroock A D, Ajdari A 2004 Ann. Rev. Fluid Mech. 36 381

    [3]

    Rice C L, Whitehead R 1965 J. Phys. Chem. 69 4017

    [4]

    Levine S, Marriott J R, Neale G, Epstein N 1975 J. Colloid Interface Sci. 52 136

    [5]

    Wang X M, Chen B, Wu J K 2007 Phys. Fluids 19 127101

    [6]

    Santiago J G 2001 Anal. Chem. 73 2353

    [7]

    Das S, Chakraborty S 2006 Anal. Chim. Acta 559 15

    [8]

    Chakraborty S 2007 Anal. Chim. Acta 605 175

    [9]

    Zhao C L, Zholkovskij E, Masliyah J H, Yang C 2008 J. Colloid Interface Sci. 326 503

    [10]

    Zhao C L, Yang C 2011 J. Non-Newtonian Fluid Mech. 166 1076

    [11]

    Berli C L A, Olivares M L 2008 J. Colloid Interface Sci. 320 582

    [12]

    Tang G H, Li X F, He Y L, Tao W Q 2009 J. Non-Newtonian Fluid Mech. 157 133

    [13]

    Hayat T, Afzal S, Hendi A 2011 App. Math. Mech. Engl. Ed. 32 1119

    [14]

    Chang L, Jian Y J 2012 Acta Phys. Sin. 61 124702 (in Chinese) [长龙, 菅永军 2012 61 124702]

    [15]

    Liu Q S, Yang L G, Su J 2013 Acta Phys. Sin. 62 144702 (in Chinese) [刘全生, 杨连贵, 苏洁 2013 62 144702]

    [16]

    Zheng L C, Zhang C L, Zhang X X, Zhang J H 2013 J. Franklin I. 350 990

    [17]

    Zhao M L, Wang S W, Wei S S 2013 J. Non-Newtonian Fluid Mech. 201 135

    [18]

    Xu S F, Wang J G 2013 Acta Phys. Sin. 62 124701 (in Chinese) [许少峰, 汪久根 2013 62 124701]

    [19]

    Niu J, Fu C J, Tan W C 2012 PLoS ONE 7 e37274

    [20]

    Tan Z, Qi H T, Jiang X Y 2014 App. Math. Mech. Engl. Ed. 35 689

    [21]

    Kang J H, Zhou F B, Tan W C, Xia T Q 2014 J. Non-Newtonian Fluid Mech. 213 50

    [22]

    Ng C O, Qi C 2014 J. Non-Newtonian Fluid Mech. 208 118

    [23]

    Wang S W, Zhao M L, Li X C 2014 Cent. Eur. J. Phys. 12 445

    [24]

    Mondal M, Misra R P, De S 2014 Int. J. Therm Sci. 86 48

    [25]

    Xie Z Y, Jian Y J 2014 Colloids Surf. A 461 231

    [26]

    Yang F Q 2007 Appl. Phys. Lett. 90 133105

    [27]

    Eyring H 1936 J. Chem. Phys. 4 283

    [28]

    Bird R B, Armstrong R, Hassager O 1987 Dynamics of Polymeric Liquids (New York: John Wiley & Sons) pp169-253

    [29]

    Liu X L, Jiang M, Yang P R, Kaneta M 2005 ASME J. Tribology 127 70

    [30]

    Bosse M A, Araya H, Troncoso S A, Arce P E 2002 Electrophoresis 23 2149;

    [31]

    Afonso A M, Ferrás L L, Nóbrega J M, Alves M A, Pinho F T 2014 Microfluid. Nanofluid. 16 1131

  • [1]

    Hunter R J 1981 Zeta Potential in Colloid Science (New York: Academic Press) p15

    [2]

    Stone H A, Stroock A D, Ajdari A 2004 Ann. Rev. Fluid Mech. 36 381

    [3]

    Rice C L, Whitehead R 1965 J. Phys. Chem. 69 4017

    [4]

    Levine S, Marriott J R, Neale G, Epstein N 1975 J. Colloid Interface Sci. 52 136

    [5]

    Wang X M, Chen B, Wu J K 2007 Phys. Fluids 19 127101

    [6]

    Santiago J G 2001 Anal. Chem. 73 2353

    [7]

    Das S, Chakraborty S 2006 Anal. Chim. Acta 559 15

    [8]

    Chakraborty S 2007 Anal. Chim. Acta 605 175

    [9]

    Zhao C L, Zholkovskij E, Masliyah J H, Yang C 2008 J. Colloid Interface Sci. 326 503

    [10]

    Zhao C L, Yang C 2011 J. Non-Newtonian Fluid Mech. 166 1076

    [11]

    Berli C L A, Olivares M L 2008 J. Colloid Interface Sci. 320 582

    [12]

    Tang G H, Li X F, He Y L, Tao W Q 2009 J. Non-Newtonian Fluid Mech. 157 133

    [13]

    Hayat T, Afzal S, Hendi A 2011 App. Math. Mech. Engl. Ed. 32 1119

    [14]

    Chang L, Jian Y J 2012 Acta Phys. Sin. 61 124702 (in Chinese) [长龙, 菅永军 2012 61 124702]

    [15]

    Liu Q S, Yang L G, Su J 2013 Acta Phys. Sin. 62 144702 (in Chinese) [刘全生, 杨连贵, 苏洁 2013 62 144702]

    [16]

    Zheng L C, Zhang C L, Zhang X X, Zhang J H 2013 J. Franklin I. 350 990

    [17]

    Zhao M L, Wang S W, Wei S S 2013 J. Non-Newtonian Fluid Mech. 201 135

    [18]

    Xu S F, Wang J G 2013 Acta Phys. Sin. 62 124701 (in Chinese) [许少峰, 汪久根 2013 62 124701]

    [19]

    Niu J, Fu C J, Tan W C 2012 PLoS ONE 7 e37274

    [20]

    Tan Z, Qi H T, Jiang X Y 2014 App. Math. Mech. Engl. Ed. 35 689

    [21]

    Kang J H, Zhou F B, Tan W C, Xia T Q 2014 J. Non-Newtonian Fluid Mech. 213 50

    [22]

    Ng C O, Qi C 2014 J. Non-Newtonian Fluid Mech. 208 118

    [23]

    Wang S W, Zhao M L, Li X C 2014 Cent. Eur. J. Phys. 12 445

    [24]

    Mondal M, Misra R P, De S 2014 Int. J. Therm Sci. 86 48

    [25]

    Xie Z Y, Jian Y J 2014 Colloids Surf. A 461 231

    [26]

    Yang F Q 2007 Appl. Phys. Lett. 90 133105

    [27]

    Eyring H 1936 J. Chem. Phys. 4 283

    [28]

    Bird R B, Armstrong R, Hassager O 1987 Dynamics of Polymeric Liquids (New York: John Wiley & Sons) pp169-253

    [29]

    Liu X L, Jiang M, Yang P R, Kaneta M 2005 ASME J. Tribology 127 70

    [30]

    Bosse M A, Araya H, Troncoso S A, Arce P E 2002 Electrophoresis 23 2149;

    [31]

    Afonso A M, Ferrás L L, Nóbrega J M, Alves M A, Pinho F T 2014 Microfluid. Nanofluid. 16 1131

  • [1] 时朋朋, 郝帅. 磁记忆检测的力磁耦合型磁偶极子理论及解析解.  , 2021, 70(3): 034101. doi: 10.7498/aps.70.20200937
    [2] 万峰, 武保剑, 曹亚敏, 王瑜浩, 文峰, 邱昆. 空频复用光纤中四波混频过程的解析分析方法.  , 2019, 68(11): 114207. doi: 10.7498/aps.68.20182129
    [3] 段娟, 陈耀钦, 朱庆勇. 微扩张管道内幂律流体非定常电渗流动.  , 2016, 65(3): 034702. doi: 10.7498/aps.65.034702
    [4] 王雷磊, 崔海航, 张静, 郑旭, 王磊, 陈力. 不同粒径Janus微球的自驱动:实验及驱动机制对比.  , 2016, 65(22): 220201. doi: 10.7498/aps.65.220201
    [5] 王焕光, 吴迪, 饶中浩. 孤立系内热传导过程(火积)耗散的解析解.  , 2015, 64(24): 244401. doi: 10.7498/aps.64.244401
    [6] 毛福春, 李廷华, 黄铭, 杨晶晶, 贾邦婕. 圆柱形热集中器理论、仿真和实现.  , 2014, 63(17): 170507. doi: 10.7498/aps.63.170507
    [7] 毛杰健, 杨建荣. 大尺度浅水波方程中相互调制的非线性波.  , 2013, 62(13): 130205. doi: 10.7498/aps.62.130205
    [8] 刘全生, 杨联贵, 苏洁. 微平行管道内Jeffrey流体的非定常电渗流动.  , 2013, 62(14): 144702. doi: 10.7498/aps.62.144702
    [9] 长龙, 菅永军. 平行板微管道间Maxwell流体的高Zeta势周期电渗流动.  , 2012, 61(12): 124702. doi: 10.7498/aps.61.124702
    [10] 石玉仁, 杨红娟. 同伦分析法在求解耗散系统中的应用.  , 2010, 59(1): 67-74. doi: 10.7498/aps.59.67
    [11] 莫嘉琪. 一类广义Canard系统的近似解析解.  , 2009, 58(2): 695-698. doi: 10.7498/aps.58.695
    [12] 厉江帆, 单树民, 杨建坤, 姜宗福. 失谐量子频率转换系统薛定谔方程的显式解析解.  , 2007, 56(10): 5597-5601. doi: 10.7498/aps.56.5597
    [13] 陈昌远, 陆法林, 孙东升. Hulthén势散射态的解析解.  , 2007, 56(11): 6204-6208. doi: 10.7498/aps.56.6204
    [14] 杨鹏飞. 一类带限定变换的二阶耦合线性微分方程组的解析解.  , 2006, 55(11): 5579-5584. doi: 10.7498/aps.55.5579
    [15] 谢元喜, 唐驾时. 对“求一类非线性偏微分方程解析解的一种简洁方法”一文的一点注记.  , 2005, 54(3): 1036-1038. doi: 10.7498/aps.54.1036
    [16] 蔡长英, 任中洲, 鞠国兴. 指数型变化有效质量的三维Schr?dinger方程的解析解.  , 2005, 54(6): 2528-2533. doi: 10.7498/aps.54.2528
    [17] 董全林, 王 坤, 张春熹, 刘 彬. 圆柱体相对转动动力学方程的积分解.  , 2004, 53(2): 337-342. doi: 10.7498/aps.53.337
    [18] 谢元喜, 唐驾时. 求一类非线性偏微分方程解析解的一种简洁方法.  , 2004, 53(9): 2828-2830. doi: 10.7498/aps.53.2828
    [19] 郑春龙, 张解放. (2+1)维Camassa-Holm方程的相似约化与解析解.  , 2002, 51(11): 2426-2430. doi: 10.7498/aps.51.2426
    [20] 陈 科, 赵二海, 孙 鑫, 付柔励. 高分子中激子和双激子的极化率(解析计算).  , 2000, 49(9): 1778-1785. doi: 10.7498/aps.49.1778
计量
  • 文章访问数:  6284
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-03
  • 修回日期:  2015-03-23
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map