Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrical resistivity of nanostructured aluminum at low temperature

Sun Li-Jun Dai Fei Luo Jiang-Shan Yi Yong Yang Meng-Sheng Zhang Ji-Cheng Li Jun Lei Hai-Le

Citation:

Electrical resistivity of nanostructured aluminum at low temperature

Sun Li-Jun, Dai Fei, Luo Jiang-Shan, Yi Yong, Yang Meng-Sheng, Zhang Ji-Cheng, Li Jun, Lei Hai-Le
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The nanostructured materials have been revealed to have exclusive physical and chemical properties due to their quantum-size effects, small-size effects and a large fraction of grain boundaries. Especially, the grain boundaries play an important role in the electrical resistivity of nanostructured metal. We use the four-point probe method to measure the values of electrical resistivity () of the nanostructured aluminum samples and the coarse-grained bulk aluminum samples at temperature (T) ranging from 8 K to 300 K to explore the relationship between the electrical resistivity and temperature. The aluminum nanoparticles produced by the flow-levitation method through electromagnetic induction heating are compacted into nanostructured samples in vacuum by the hot pressing and sintering technology. The microstructures of all nanostructured aluminum samples are analyzed by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope with the energy-dispersive spectrometer (SEM-EDS). The densities of all nanostructured aluminum samples are measured by using the Archimedes method (the medium is absolute alcohol). The experimental results show that the shape of aluminum nanoparticles is found to keep spherical from the SEM images and the relative density of all nanostructured aluminum samples is about 93% of the coarse-grained bulk aluminum. The XRD spectra state that the face-centered cubic (fcc) phase dominates the samples and no diffraction peak related to impurities appears in the XRD spectrum for each of all nanostructured aluminum samples. Amorphous alumina layers (about 2 nm thick) are found to surround the aluminum nanoparticles and hence connect the grains in the nanostructured aluminum as shown in the high-resolution TEM images. Owing to the scattering of grain boundaries on electrons and the phonon-electron scattering at grain boundaries, the electrical resistivity is far larger in the nanostructured aluminum than in the coarse-grained bulk aluminum and the relationship between the electrical resistivity and temperature for nanostructured aluminum shows a different feature from that for the coarse-grained bulk aluminum. Although the temperature dependent electrical resistivity ((T)) is a function of T4 at low temperatures for the coarse-grained bulk aluminum, it varies with the temperature not only according to the relation T4, but also according to the relation T3 for the nanostructured aluminum. The residual resistivity (0) of the nanostructured aluminum sample is about 5.510-4m, 5-6 orders magnitude larger than that of the coarse-grained bulk aluminum (2.0110-10m) due to the scattering of both the grain boundaries and amorphous alumina on electrons therein.
      Corresponding author: Lei Hai-Le, hailelei@caep.ac.cn
    [1]

    Okuda S, Tang F 1995 Nanostruct. Mater. 6 585

    [2]

    Kumar K S, van Swygenhoven H, Suresh S 2003 Acta. Mater. 51 5743

    [3]

    Ederth J, Kish L B, Olsson E, Granqvist C G 2002 J. Appl. Phys. 91 1529

    [4]

    Andrews P V 1965 Phys. Lett. 19 558

    [5]

    Huang Y K, Menovsky A A, de Boer F R 1993 Nanostruct. Mater. 2 505

    [6]

    Riedel S, Rber J, GeBner T 1997 Microelectron. Eng. 33 165

    [7]

    Okram G S, Soni A, Rawat R 2008 Nanotechnology 19 185711

    [8]

    Zeng H, Wu Y, Zhang J X, Kuang C J, Yue M, Zhou S X 2013 Prog. Nal. Sci.: Mater. Int. 23 18

    [9]

    Ziman J M 1960 Electrons and Phonons (Oxford: Clarendon Press) pp334-335

    [10]

    Bid A, Bora A, Raychaudhuri A K 2006 Phys. Rev. B 74 035426

    [11]

    Charles K (translated by Xiang J Z, Wu X H) 2005 Introduction to Solid State Physics (Beijing: Chemical Industry Press) p105 (in Chinese) [基泰尔 著, (项金钟, 吴兴惠 译)2005 固体物理导论 (北京:化学工业出版社)第105页

    [12]

    Moussouros P K, Kos J F 1977 Can. J. Phys. 55 2071

    [13]

    Qian L H, Lu Q H, Kong W J, Lu K 2004 Scripta Mater. 50 1407

    [14]

    Barmak K, Darbal A, Ganesh K J, Ferreira P J, Rickman J M, Sun T, Yao B, Warren A P, Coffey K R 2014 J. Vac. Sci. Technol. A 32 061503

    [15]

    Arenas C, Henriquez R, Moraga L, Munoz E, Munoz R C 2015 Appl. Surf. Sci. 329 184

    [16]

    Mayadas A F, Shatzkes M1970 Phys. Rev. B 1 1382

    [17]

    Wei J J, Li C Y, Tang Y J, Wu W D, Yang X D 2003 High Power Laser and Particle beams 15 359 (in chinese) [韦军建, 李超阳, 唐永建, 吴卫东, 杨向东 2003 强激光与离子束 15 359]

    [18]

    Li Y 2014 M. S. Dissertation (Mianyang: Southwest University of Science and Technology) (in Chinese) [李裕 2014 硕士学位论文(绵阳: 西南科技大学)]

    [19]

    Song Y H, Luo J S, Fan X Q, Xing P F, Yi Y, Yang M S, Li K, Lei H L 2015 At. Energ. Sci. Technol. 49 354 (in Chinese) [宋言红, 罗江山, 范晓强, 邢丕峰, 易勇, 杨蒙生, 李凯, 雷海乐 2015 原子能科学技术 49 354]

    [20]

    Huang K, Han R Q 2006 Solid State Physics (Beijing: Higher Education Press) p300 (in Chinese) [黄昆, 韩汝琦 2006 固体物理学(北京: 高等教育出版社)第300页]

    [21]

    Kasap S O (translated by Wang H) 2009 Principles of Electronic Materials and Devices (Vol.1) Third Edition (Xian: Xian Jiaotong University Press) pp98-108 (in Chinese) [萨法卡萨普 著 (汪宏 译)2009 电子材料与器件原理(上册) 第三版(西安: 西安交通大学出版社)第 98-108 页]

    [22]

    Tomchuk P M 1992 Int. J. Electron. 73 949

    [23]

    Hodak J H, Henglein A, Hartland G V 2000 J. Chem. Phys. 112 5942

    [24]

    Ma W G, Wang H D, Zhang X, Wang W 2010 J. Appl. Phys. 108 064308

    [25]

    Lu K 1996 Mater. Sci. Eng. 16 161221

    [26]

    Van Hove M A, Weinberg W H, Chan C M 1986 Low-energy Electron Diffraction (Berlin: Springer-Verlag) pp45-48

    [27]

    Hu X, Wang G, Wu W, Jiang P, Zi J 2001 J. Phys.: Condens. Matter 13 835

    [28]

    Lei H L, Li J, Liu Y Q, Liu X 2013 Europhys. Lett. 101 46001

    [29]

    Kubakaddi S S 2007 Phy. Rev. B 75 075309

    [30]

    Kara A, Rahman T S 1998 Phys. Rev. Lett. 81 1453

    [31]

    Dobierzewska-Mozrzymas E, Warkusz F 1979 Electrocomponent Sci. Technol. 5 223

    [32]

    Berry R J 1972 Phys. Rev. B 6 2994

    [33]

    Dworin L 1971 Phys. Rev. Lett. 26 1244

  • [1]

    Okuda S, Tang F 1995 Nanostruct. Mater. 6 585

    [2]

    Kumar K S, van Swygenhoven H, Suresh S 2003 Acta. Mater. 51 5743

    [3]

    Ederth J, Kish L B, Olsson E, Granqvist C G 2002 J. Appl. Phys. 91 1529

    [4]

    Andrews P V 1965 Phys. Lett. 19 558

    [5]

    Huang Y K, Menovsky A A, de Boer F R 1993 Nanostruct. Mater. 2 505

    [6]

    Riedel S, Rber J, GeBner T 1997 Microelectron. Eng. 33 165

    [7]

    Okram G S, Soni A, Rawat R 2008 Nanotechnology 19 185711

    [8]

    Zeng H, Wu Y, Zhang J X, Kuang C J, Yue M, Zhou S X 2013 Prog. Nal. Sci.: Mater. Int. 23 18

    [9]

    Ziman J M 1960 Electrons and Phonons (Oxford: Clarendon Press) pp334-335

    [10]

    Bid A, Bora A, Raychaudhuri A K 2006 Phys. Rev. B 74 035426

    [11]

    Charles K (translated by Xiang J Z, Wu X H) 2005 Introduction to Solid State Physics (Beijing: Chemical Industry Press) p105 (in Chinese) [基泰尔 著, (项金钟, 吴兴惠 译)2005 固体物理导论 (北京:化学工业出版社)第105页

    [12]

    Moussouros P K, Kos J F 1977 Can. J. Phys. 55 2071

    [13]

    Qian L H, Lu Q H, Kong W J, Lu K 2004 Scripta Mater. 50 1407

    [14]

    Barmak K, Darbal A, Ganesh K J, Ferreira P J, Rickman J M, Sun T, Yao B, Warren A P, Coffey K R 2014 J. Vac. Sci. Technol. A 32 061503

    [15]

    Arenas C, Henriquez R, Moraga L, Munoz E, Munoz R C 2015 Appl. Surf. Sci. 329 184

    [16]

    Mayadas A F, Shatzkes M1970 Phys. Rev. B 1 1382

    [17]

    Wei J J, Li C Y, Tang Y J, Wu W D, Yang X D 2003 High Power Laser and Particle beams 15 359 (in chinese) [韦军建, 李超阳, 唐永建, 吴卫东, 杨向东 2003 强激光与离子束 15 359]

    [18]

    Li Y 2014 M. S. Dissertation (Mianyang: Southwest University of Science and Technology) (in Chinese) [李裕 2014 硕士学位论文(绵阳: 西南科技大学)]

    [19]

    Song Y H, Luo J S, Fan X Q, Xing P F, Yi Y, Yang M S, Li K, Lei H L 2015 At. Energ. Sci. Technol. 49 354 (in Chinese) [宋言红, 罗江山, 范晓强, 邢丕峰, 易勇, 杨蒙生, 李凯, 雷海乐 2015 原子能科学技术 49 354]

    [20]

    Huang K, Han R Q 2006 Solid State Physics (Beijing: Higher Education Press) p300 (in Chinese) [黄昆, 韩汝琦 2006 固体物理学(北京: 高等教育出版社)第300页]

    [21]

    Kasap S O (translated by Wang H) 2009 Principles of Electronic Materials and Devices (Vol.1) Third Edition (Xian: Xian Jiaotong University Press) pp98-108 (in Chinese) [萨法卡萨普 著 (汪宏 译)2009 电子材料与器件原理(上册) 第三版(西安: 西安交通大学出版社)第 98-108 页]

    [22]

    Tomchuk P M 1992 Int. J. Electron. 73 949

    [23]

    Hodak J H, Henglein A, Hartland G V 2000 J. Chem. Phys. 112 5942

    [24]

    Ma W G, Wang H D, Zhang X, Wang W 2010 J. Appl. Phys. 108 064308

    [25]

    Lu K 1996 Mater. Sci. Eng. 16 161221

    [26]

    Van Hove M A, Weinberg W H, Chan C M 1986 Low-energy Electron Diffraction (Berlin: Springer-Verlag) pp45-48

    [27]

    Hu X, Wang G, Wu W, Jiang P, Zi J 2001 J. Phys.: Condens. Matter 13 835

    [28]

    Lei H L, Li J, Liu Y Q, Liu X 2013 Europhys. Lett. 101 46001

    [29]

    Kubakaddi S S 2007 Phy. Rev. B 75 075309

    [30]

    Kara A, Rahman T S 1998 Phys. Rev. Lett. 81 1453

    [31]

    Dobierzewska-Mozrzymas E, Warkusz F 1979 Electrocomponent Sci. Technol. 5 223

    [32]

    Berry R J 1972 Phys. Rev. B 6 2994

    [33]

    Dworin L 1971 Phys. Rev. Lett. 26 1244

  • [1] Gao Feng, Li Huan-Qing, Song Zhuo, Zhao Yu-Hong. The Evolution of Grain Boundary Dislocations in Graphene Induced by Strain: Three-Mode Phase-Field Crystal Method. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [2] Chen Wei-Long, Guo Rong-Rong, Tong Yu-Shen, Liu Li-Li, Zhou Sheng-Lan, Lin Jin-Hai. Influence of sub-bandgap illumination on electric field distribution at grain boundary in CdZnTe crystals. Acta Physica Sinica, 2022, 71(22): 226101. doi: 10.7498/aps.71.20220896
    [3] Guo Can, Zhao Yu-Ping, Deng Ying-Yuan, Zhang Zhong-Ming, Xu Chun-Jie. A phase-field study on interaction process of moving grain boundary and spinodal decomposition. Acta Physica Sinica, 2022, 71(7): 078101. doi: 10.7498/aps.71.20211973
    [4] Qi Ke-Wu, Zhao Yu-Hong, Tian Xiao-Lin, Peng Dun-Wei, Sun Yuan-Yang, Hou Hua. Phase field crystal simulation of effect of misorientation angle on low-angle asymmetric tilt grain boundary dislocation motion. Acta Physica Sinica, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [5] Zhou Liang-Fu, Zhang Jing, He Wen-Hao, Wang Dong, Su Xue, Yang Dong-Yang, Li Yu-Hong. The nucleation and growth of Helium hubbles at grain boundaries of bcc tungsten: a molecular dynamics simulation. Acta Physica Sinica, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [6] Qi Ke-Wu, Zhao Yu-Hong, Guo Hui-Jun, Tian Xiao-Lin, Hou Hua. Phase field crystal simulation of the effect of temperature on low-angle symmetric tilt grain boundary dislocation motion. Acta Physica Sinica, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [7] Li Yu, Luo Jiang-Shan, Wang Zhu, Yang Meng-Sheng, Xing Pi-Feng, Yi Yong, Lei Hai-Le. Nanocrystalline aluminum studied by positron annihilation lifetime spectroscopy. Acta Physica Sinica, 2014, 63(24): 247803. doi: 10.7498/aps.63.247803
    [8] Long Jian, Wang Zhao-Yu, Zhao Yu-Long, Long Qing-Hua, Yang Tao, Chen Zheng. Phase field crystal study on grain boundary evolution and its micro-mechanism under various symmetry. Acta Physica Sinica, 2013, 62(21): 218101. doi: 10.7498/aps.62.218101
    [9] Zheng Zong-Wen, Xu Ting-Dong, Wang Kai, Shao Chong. Progress in the theory of grain boundary anelastic relaxation. Acta Physica Sinica, 2012, 61(24): 246202. doi: 10.7498/aps.61.246202
    [10] He Jie, Chen Jun, Wang Xiao-Zhong, Lin Li-Bin. The first principles study on mechanical propertiesof He doped grain boundary of Al. Acta Physica Sinica, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [11] Ma Wen, Zhu Wen-Jun, Chen Kai-Guo, Jing Fu-Qian. Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects. Acta Physica Sinica, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [12] Chen Xian-Miao, Song Shen-Hua. Non-equilibrium grain boundary segregation of phosphorous during high temperature plastic deformation. Acta Physica Sinica, 2009, 58(13): 183-S188. doi: 10.7498/aps.58.183
    [13] Bie Shao-Wei, Jiang Jian-Jun, Ma Qiang, Du Gang, Yuan Lin, Di Yong-Jiang, Feng Ze-Kun, He Hua-Hui. Soft magnetic properties and microwave permeability of multilayer nanogranular films with high resistivity. Acta Physica Sinica, 2008, 57(4): 2514-2518. doi: 10.7498/aps.57.2514
    [14] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [15] Liu Gui-Li, Li Rong-De. Ordering and interaction of Fe and RE atoms on grain boundaries in ZA27 alloys. Acta Physica Sinica, 2006, 55(2): 776-779. doi: 10.7498/aps.55.776
    [16] Li Pei-Gang, Lei Ming, Tang Wei-Hua, Song Peng-Yun, Chen Chin-Ping, Li Ling-Hong. The effect of grain boundaries on magnetic and transport properties in colossal magnetoresistance particle film. Acta Physica Sinica, 2006, 55(5): 2328-2332. doi: 10.7498/aps.55.2328
    [17] Zhou Yun, Long Yun-Ze, Chen Zhao-Jia, Zhang Zhi-Ming, Wan Mei-Xiang. Resistivity of polyaniline nanotubes doped with naphthalene sulfonic acid: dependence on moisture and ethanol. Acta Physica Sinica, 2005, 54(1): 228-232. doi: 10.7498/aps.54.228
    [18] Liu Gui-Li, Li Rong-De. Segregation and interaction of rare earth and iron elements on grain boundaries in ZA27 alloys. Acta Physica Sinica, 2004, 53(10): 3482-3486. doi: 10.7498/aps.53.3482
    [19] Zhang Lin, Wang Shao-Qing, Ye Heng-Qiang. Molecular dynamics study of the structure changes in a high-angle Cu grain boundary by heating and quenching. Acta Physica Sinica, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [20] Long Yun-Ze, Chen Zhao-Jia, Zhang Zhi-Ming, Wan Mei-Xiang, Zheng Ping, Wang Nan-Lin, He Chao-Hui, Geng Bin, Yang Hai-Liang, Chen Xiao-Hua, Wang Yan-Ping, Li Guo-Zheng. Resistivity and magnetic susceptibility of nanotubular polyaniline doped with protonic acids. Acta Physica Sinica, 2003, 52(1): 175-179. doi: 10.7498/aps.52.175
Metrics
  • Abstract views:  5821
  • PDF Downloads:  267
  • Cited By: 0
Publishing process
  • Received Date:  10 March 2016
  • Accepted Date:  16 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回
Baidu
map