搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准一维Cr基超导体RbCr3As3的超导能隙

李青 汪旻祥 刘通 穆青隔 任治安 李世燕

引用本文:
Citation:

准一维Cr基超导体RbCr3As3的超导能隙

李青, 汪旻祥, 刘通, 穆青隔, 任治安, 李世燕

Superconducting gap of quasi-one-dimensional Cr-based superconductor RbCr3As3

Li Qing, Wang Min-Xiang, Liu Tong, Mu Qing-Ge, Ren Zhi-An, Li Shi-Yan
PDF
导出引用
  • RbCr3As3是具有[(Cr3As3)-]线性链的准一维超导体,超导转变温度约为6.6 K.对RbCr3As3单晶进行了电输运和极低温热输运性质的研究.低温下,拟合了RbCr3As3正常态电阻率随温度的变化,发现其满足费米液体行为.通过拟合超导转变温度随磁场的关系,得到RbCr3As3单晶的上临界场约为25.6 T.对RbCr3As3进行了零场下的极低温热导率测量,得到其剩余线性项为7.5 WK-2cm-1,占正常态热导率值的24%.测量不同磁场下RbCr3As3的热导率,发现与单带s波超导体相比较,RbCr3As3剩余线性项随磁场增加相对较快.这些结果表明RbCr3As3单晶很可能是有节点的非常规超导体.
    Since the discovery of high-temperature superconductivity in cuprates, finding more unconventional superconductors and understanding their superconducting pairing mechanism has been an important theme in condensed matter physics. Recently, ternary Cr-based superconductors A2Cr3As3 (A=K, Rb, Cs) and ACr3As3 (A=K, Rb) were reported, which own quasi-one-dimensional crystal structure, containing[(Cr3As3)-] linear chains. A2Cr3As3 belongs to P6m2 space group, and ACr3As3 crystallizes in a centrosymmetric structure with the space group P63/m. Many experiments, such as nuclear magnetic resonance, London penetration depth, show that A2Cr3As3 is an unconventional superconductor. However, these A2Cr3As3 compounds are extremely unstable in air. Here, we study the superconducting gap of the air-stable RbCr3As3 single crystal, using ultralow-temperature thermal conductivity measurement. The resistivity of RbCr3As3 single crystal shows a superconducting transition temperature Tczero at 6.6 K. The normal-state resistivity data from 20 K to 8 K are fitted to (T)=0 + AT2, which gives a residual resistivity of 0=781 cm. Then, the thermal conductivity of RbCr3As3 single crystal is measured at temperature down to 80 mK and in magnetic fields up to 9 T. In zero field, residual linear term 0/T=7.5 WK-2cm-1 is observed, which is about 24% of its normal-state value, suggesting nodes in the superconducting gap. At low field, the 0/T of RbCr3As3 shows a relatively faster field dependence than single-gap s-wave superconductors. These results reveal that RbCr3As3 is likely an unconventional superconductor with superconducting gap nodes, although the exact superconducting gap symmetry and structure for this quasi-one-dimensional superconductor needs further investigation.
      通信作者: 李世燕, shiyan_li@fudan.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0300503,2015CB921401)、国家自然科学基金委员会-中国工程物理研究院联合基金(批准号:U1630248)和国家自然科学基金(批准号:11474339,11774402)资助的课题.
      Corresponding author: Li Shi-Yan, shiyan_li@fudan.edu.cn
    • Funds: Project supported by the National Key Research and Development Plan of China (Grant Nos. 2016YFA0300503, 2015CB921401), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1630248), and the National Natural Science Foundation of China (Grant Nos. 11474339, 11774402).
    [1]

    Norman M R 2011 Science 322 196

    [2]

    Voit J 1994 Rep. Prog. Phys. 57 977

    [3]

    Grner G 1988 Rev. Mod. Phys. 60 1129

    [4]

    Lee I J, Brown S E, Clark W G, Strouse M J, Naughton M J, Kang W, Chaikin P M 2001 Phys. Rev. Lett. 88 017004

    [5]

    Sepper O, Lebed A G 2013 Phys. Rev. B 87 100511

    [6]

    Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. X 5 011013

    [7]

    Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. B 91 020506

    [8]

    Tang Z T, Bao J K, Wang Z, Bai H, Jiang H, Liu Y, Zhai H F, Feng C M, Xu Z A, Cao G H 2015 Sci. China: Mater. 58 16

    [9]

    Zhou Y, Cao C, Zhang F C 2017 Sci. Bull. 62 208

    [10]

    Jiang H, Cao G H, Cao C 2015 Sci. Rep. 5 16054

    [11]

    Zhi H Z, Imai T, Ning F L, Bao J K, Cao G H 2015 Phys. Rev. Lett. 114 147004

    [12]

    Tang Z T, Bao J K,Liu Y, Bai H, Jiang H, Zhai H F, Feng C M, Xu Z A, Cao G H 2015 Sci. China: Mater. 58 543

    [13]

    Bao J K, Li L, Tang Z T, Liu Y, Li Y K, Bai H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. B 91 180404

    [14]

    Mu Q G, Ruan B B, Pan B J, Liu T, Yu J, Zhao K, Chen G F, Ren Z A 2017 Phys. Rev. B 96 140504

    [15]

    Liu T, Mu Q G, Pan B J, Yu J, Ruan B B, Zhao K, Chen G F, Ren Z A 2017 Europhys. Lett. 120 27006

    [16]

    Shakeripour H, Petrovic C, Taillefer L 2009 New J. Phys. 11 055065

    [17]

    Sutherland M, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R X, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M, Takagi H 2003 Phys. Rev. B 67 174520

    [18]

    Li S Y, Bonnemaison J B, Payeur A, Fournier P, Wang C H, Chen X H, Taillefer L 2008 Phys. Rev. B 77 134501

    [19]

    Dong J K, Zhou S Y, Guan T Y, Zhang H, Dai Y F, Qiu X, Wang X F, He Y, Chen X H, Li S Y 2010 Phys. Rev. Lett. 104 087005

    [20]

    Proust C, Boaknin E, Hill R W, Taillefer L, Mackenzie A P 2002 Phys. Rev. Lett. 89 147003

    [21]

    Suzuki M, Tanatar M A, Kikugawa N, Mao Z Q, Maeno Y, Ishiguro T 2002 Phys. Rev. Lett. 88 227004

    [22]

    Lowell J, Sousa J B 1970 J. Low. Temp. Phys. 3 65

    [23]

    Willis J, Ginsberg D 1976 Phys. Rev. B 14 1916

    [24]

    Boaknin E, Tanatar M A, Paglione J, Hawthorn D, Ronning F, Hill R W, Sutherland M, Taillefer L, Sonier J, Hayden S M, Brill J W 2003 Phys. Rev. Lett. 90 117003

    [25]

    Reid J P, Tanatar M A, Fecteau A J, Gordon R T, de Cotret S R, Leyraud N D, Saito T, Fukazawa H, Kohori Y, Kihou K, Lee C H, Iyo A, Eisaki H, Prozorov R, Taillefer L 2012 Phys. Rev. Lett. 109 087001

    [26]

    Lee I J, Chow D S, Clark W G, Strouse M J, Naughton M J, Chaikin P M, Brown S E 2003 Phys. Rev. B 68 092510

    [27]

    Belin S, Behnia K 1997 Phys. Rev. Lett. 79 2125

    [28]

    Luke G M, Rovers M T, Fukaya A, Gat I M, Larkin I,Savici A, Uemura Y J, Kojima K M, Chaikin P M, Lee I J, Naughton M J 2003 Physica B 326 378

    [29]

    Yonezawa S, MaenoY, Bechgaard K, Jrome D 2012 Phys. Rev. B 85 140520

    [30]

    Shimahara H 2000 Phys. Rev. B 61 R14936

    [31]

    Kuroki K, Arita R, Aoki H 2001 Phys. Rev. B 63 094509

    [32]

    Lebed A G 2012 Physica B 407 1803

  • [1]

    Norman M R 2011 Science 322 196

    [2]

    Voit J 1994 Rep. Prog. Phys. 57 977

    [3]

    Grner G 1988 Rev. Mod. Phys. 60 1129

    [4]

    Lee I J, Brown S E, Clark W G, Strouse M J, Naughton M J, Kang W, Chaikin P M 2001 Phys. Rev. Lett. 88 017004

    [5]

    Sepper O, Lebed A G 2013 Phys. Rev. B 87 100511

    [6]

    Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. X 5 011013

    [7]

    Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. B 91 020506

    [8]

    Tang Z T, Bao J K, Wang Z, Bai H, Jiang H, Liu Y, Zhai H F, Feng C M, Xu Z A, Cao G H 2015 Sci. China: Mater. 58 16

    [9]

    Zhou Y, Cao C, Zhang F C 2017 Sci. Bull. 62 208

    [10]

    Jiang H, Cao G H, Cao C 2015 Sci. Rep. 5 16054

    [11]

    Zhi H Z, Imai T, Ning F L, Bao J K, Cao G H 2015 Phys. Rev. Lett. 114 147004

    [12]

    Tang Z T, Bao J K,Liu Y, Bai H, Jiang H, Zhai H F, Feng C M, Xu Z A, Cao G H 2015 Sci. China: Mater. 58 543

    [13]

    Bao J K, Li L, Tang Z T, Liu Y, Li Y K, Bai H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. B 91 180404

    [14]

    Mu Q G, Ruan B B, Pan B J, Liu T, Yu J, Zhao K, Chen G F, Ren Z A 2017 Phys. Rev. B 96 140504

    [15]

    Liu T, Mu Q G, Pan B J, Yu J, Ruan B B, Zhao K, Chen G F, Ren Z A 2017 Europhys. Lett. 120 27006

    [16]

    Shakeripour H, Petrovic C, Taillefer L 2009 New J. Phys. 11 055065

    [17]

    Sutherland M, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R X, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M, Takagi H 2003 Phys. Rev. B 67 174520

    [18]

    Li S Y, Bonnemaison J B, Payeur A, Fournier P, Wang C H, Chen X H, Taillefer L 2008 Phys. Rev. B 77 134501

    [19]

    Dong J K, Zhou S Y, Guan T Y, Zhang H, Dai Y F, Qiu X, Wang X F, He Y, Chen X H, Li S Y 2010 Phys. Rev. Lett. 104 087005

    [20]

    Proust C, Boaknin E, Hill R W, Taillefer L, Mackenzie A P 2002 Phys. Rev. Lett. 89 147003

    [21]

    Suzuki M, Tanatar M A, Kikugawa N, Mao Z Q, Maeno Y, Ishiguro T 2002 Phys. Rev. Lett. 88 227004

    [22]

    Lowell J, Sousa J B 1970 J. Low. Temp. Phys. 3 65

    [23]

    Willis J, Ginsberg D 1976 Phys. Rev. B 14 1916

    [24]

    Boaknin E, Tanatar M A, Paglione J, Hawthorn D, Ronning F, Hill R W, Sutherland M, Taillefer L, Sonier J, Hayden S M, Brill J W 2003 Phys. Rev. Lett. 90 117003

    [25]

    Reid J P, Tanatar M A, Fecteau A J, Gordon R T, de Cotret S R, Leyraud N D, Saito T, Fukazawa H, Kohori Y, Kihou K, Lee C H, Iyo A, Eisaki H, Prozorov R, Taillefer L 2012 Phys. Rev. Lett. 109 087001

    [26]

    Lee I J, Chow D S, Clark W G, Strouse M J, Naughton M J, Chaikin P M, Brown S E 2003 Phys. Rev. B 68 092510

    [27]

    Belin S, Behnia K 1997 Phys. Rev. Lett. 79 2125

    [28]

    Luke G M, Rovers M T, Fukaya A, Gat I M, Larkin I,Savici A, Uemura Y J, Kojima K M, Chaikin P M, Lee I J, Naughton M J 2003 Physica B 326 378

    [29]

    Yonezawa S, MaenoY, Bechgaard K, Jrome D 2012 Phys. Rev. B 85 140520

    [30]

    Shimahara H 2000 Phys. Rev. B 61 R14936

    [31]

    Kuroki K, Arita R, Aoki H 2001 Phys. Rev. B 63 094509

    [32]

    Lebed A G 2012 Physica B 407 1803

  • [1] 殷嘉鑫, 王强华. 超导能隙振荡: 到底来自配对密度波还是拆对散射?.  , 2024, 73(15): 157401. doi: 10.7498/aps.73.20240807
    [2] 王巨丰, 田明阳, 杜宏健, 马传许, 王兵. PbBi3低温合金薄膜的制备和超导性质.  , 2022, 71(12): 127401. doi: 10.7498/aps.71.20220050
    [3] 史良马, 张世军, 朱仁义. 双能隙介观超导体的涡旋结构模拟.  , 2013, 62(9): 097401. doi: 10.7498/aps.62.097401
    [4] 路洪艳, 陈三, 刘保通. 铜氧化物超导体两能隙问题的电子拉曼散射理论研究.  , 2011, 60(3): 037402. doi: 10.7498/aps.60.037402
    [5] 蒋明波, 吴智雄, 周敏, 黄荣进, 李来风. Bi2Te3 合金低温热电性能及冷能发电研究.  , 2010, 59(10): 7314-7319. doi: 10.7498/aps.59.7314
    [6] 郁华玲. 超导邻近效应在正常金属层中引起的反常小能隙现象.  , 2007, 56(10): 6038-6044. doi: 10.7498/aps.56.6038
    [7] 杨东升, 吴柏枚, 李 波, 郑卫华, 李世燕, 樊 荣, 陈仙辉, 曹烈兆. 双能隙超导体MgB2的热导.  , 2003, 52(3): 683-686. doi: 10.7498/aps.52.683
    [8] 赵彦立, 郑萍, 陈兆甲, 任清褒, 许祝安, 焦正宽, YJZhang, CKOng. 赝能隙导致的YBa2(Cu1-xMx)3O7-δ(M=Co,Zn)薄膜的输运性质异常.  , 2002, 51(8): 1836-1840. doi: 10.7498/aps.51.1836
    [9] 张杰, 雒建林, 白海洋, 陈兆甲, 林德华, 车广灿, 任治安, 赵忠贤, 金铎. 常压和高压合成MgB2的低温比热及两个超导能隙研究.  , 2002, 51(2): 342-346. doi: 10.7498/aps.51.342
    [10] 刘波, 施朝淑, 周东方, 戚泽明, 胡关钦, 汤洪高. 掺Gd3+,Y3+对PbWO_4低温热释光的影响.  , 2001, 50(8): 1627-1631. doi: 10.7498/aps.50.1627
    [11] 丁世英, 史可信, 曾朝阳, 余正, 施智祥, 邱里. Tl2Ba2Ca2Cu3Oy超导体磁通钉扎能的分布.  , 1991, 40(6): 985-989. doi: 10.7498/aps.40.985
    [12] 王强, 张孝文, 顾秉林, 唐晓峰. YBa2Cu3Oz超导体的低温稳定相.  , 1991, 40(6): 990-997. doi: 10.7498/aps.40.990
    [13] 喻道奇, 潘国强, 赵勇, 孙式方, 陈祖耀, 张其瑞. 颗粒超导体Ba2YCu3O7-δ的低温电阻特征.  , 1988, 37(6): 1048-1052. doi: 10.7498/aps.37.1048
    [14] 王瑞兰, 李宏成, 管惟炎. 用Re/Al2O3/Al隧道结的电子隧道测定重掺杂Re膜的超导能隙.  , 1987, 36(12): 1643-1644. doi: 10.7498/aps.36.1643
    [15] 曹效文. 非晶态超导体的能隙和霍耳系数之间的经验关系.  , 1982, 31(2): 258-261. doi: 10.7498/aps.31.258
    [16] 卫崇德, 罗小兰, 孟小凡. 非平衡超导铅膜中的非均匀能隙态.  , 1982, 31(5): 699-703. doi: 10.7498/aps.31.699
    [17] 刘福绥. 两种类型超导体的能隙.  , 1978, 27(6): 758-760. doi: 10.7498/aps.27.758
    [18] 超导材料组. 较低温扩散法Nb3Sn带绕制成十万高斯超导磁体.  , 1975, 24(6): 452-453. doi: 10.7498/aps.24.452
    [19] 吴杭生. 载有电流的超导膜的能隙和临界电流.  , 1966, 22(7): 765-769. doi: 10.7498/aps.22.765
    [20] 吴杭生, 蒋建华, 应润杰. 超导膜的能隙和磁场的依赖关系.  , 1966, 22(7): 770-780. doi: 10.7498/aps.22.770
计量
  • 文章访问数:  5951
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-11
  • 修回日期:  2018-10-08
  • 刊出日期:  2019-10-20

/

返回文章
返回
Baidu
map