搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击波作用下Pb(Zr0.95Ti0.05)O3铁电陶瓷去极化后电阻率动态特性

伍友成 刘高旻 戴文峰 高志鹏 贺红亮 郝世荣 邓建军

引用本文:
Citation:

冲击波作用下Pb(Zr0.95Ti0.05)O3铁电陶瓷去极化后电阻率动态特性

伍友成, 刘高旻, 戴文峰, 高志鹏, 贺红亮, 郝世荣, 邓建军

Dynamic resistivity of Pb(Zr0.95Ti0.05)O3 depolarized ferroelectric under shock wave compression

Wu You-Cheng, Liu Gao-Min, Dai Wen-Feng, Gao Zhi-Peng, He Hong-Liang, Hao Shi-Rong, Deng Jian-Jun
PDF
导出引用
  • 在冲击波压力作用下,极化Pb(Zr0.95Ti0.05)O3(PZT95/5)铁电陶瓷会发生铁电-反铁电相变失去极化,由于冲击波压力高、作用时间短,伴随材料去极化相变出现的瞬态电导特性难以准确测试.本文建立了新的实验方法,采用脉冲电容器作为冲击波加载铁电陶瓷脉冲电源的输出负载,在冲击波压力约3.5 GPa的实验中直接测得铁电陶瓷的漏电流,计算得到PZT95/5铁电陶瓷去极化后的电阻率,变化范围为2.2104-3.5104 cm;在实验数据的基础上,建立了动态电阻模型,对冲击波传播过程中PZT95/5铁电陶瓷去极化后的电阻率进行了分析,初步揭示了冲击波作用下PZT95/5铁电陶瓷去极化后电阻率的动态特性.
    Explosive-driven ferroelectric generator (EDFEG) has important applications due to its excellent properties of high energy density and small volume. The output of EDFEG is based on the depolarization of ferroelectric during shock wave compression. In a normal mode configuration, a planar shock wave propagates in a direction perpendicular to the polarization axis. If the resulting depolarizing current passes through a large resistive load or a small capacitive load, high electric fields can be produced within the ferroelectric sample. In this case, a portion of the depolarizing charges are lost in the sample due to finite resistivity of shocked ferroelectrics during shock wave transit. But it is very difficult to accurately measure the resistivity of shocked ferroelectric during shock wave compression, due to high pressure and short duration time. In previous studies, the value of the resistivity of shocked Pb(Zr0.95Ti0.05)O3 (PZT95/5) ferroelectric was obtained from the experimental output charge difference for different large resistive loads or by fitting the experimental current histories. However, the current leakage was not observed directly in experiment in the past. Furthermore, the value of the resistivity obtained in each of all these studies was a time-averaged value. In the present work, a new experiment method is developed to investigate dynamic resistivity of PZT95/5 under shock wave compression, in which a pulse capacitor is used as an output load. The current leakage in shocked PZT95/5 is observed in the experiment at a shock stress of 3.5 GPa after the depolarization of all ferroelectrics. This current leakage is just related to the resistance of shocked PZT95/5 and the voltage applied. The experimental results show that the resistivity of shocked PZT95/5 continuously changes in a range of 2.2104 cm-3.5104 cm for time more than the shock transit time of the sample. Based on the experimental results, a dynamic resistance model is established to analyze the resistivity of depolarized PZT95/5 ferroelectric ceramic during shock wave transit in ferroelectric. The simulation results reveal dynamic characteristic of the resistivity of depolarized PZT95/5 ferroelectric ceramic under shock wave compression. The further analysis of experimental results shows that the resistivity continuously changes between 2.0104 cm and 8.0104 cm during shock transit in ferroelectrics. It is believed that dynamic characteristic of the resistivity of shocked PZT95/5 ferroelectric ceramic is related to pressure, electrical field applied and the defects in the material. The dynamic resistivity of shocked PZT95/5 obtained in this paper and its dynamic resistance model will be helpful for designing EDFEGs and their applications in the future.
      通信作者: 高志鹏, z.p.gao@foxmail.com
    • 基金项目: 国家高技术研究发展计划(批准号:2014AAX0X3029)资助的课题.
      Corresponding author: Gao Zhi-Peng, z.p.gao@foxmail.com
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No.2014AAX0X3029).
    [1]

    Neilson F W 1957Bull. Am. Phys. Soc. 2 302

    [2]

    Liu G M, Liu Y S, Zhang Y, Du J M, He H L 2006Mater. Rev. 20 74(in Chinese)[刘高旻, 刘雨生, 张毅, 杜金梅, 贺红亮2006材料导报20 74]

    [3]

    Alberta E F, Michaud B, Hackenberger W S, Freeman B, Hemmert D J, Stults A H, Altgilbers L L 2009Proceedings of 17th IEEE Pulsed Power ConferenceWashington, USA, June 28-July 2, 2009 p161

    [4]

    Shkuratov S I, Baird J, Talantsev E F 2011Rev. Sci. Instrum. 82 086107

    [5]

    Shkuratov S I, Baird J, Talantsev E F 2012Rev. Sci. Instrum. 83 076104

    [6]

    Stults A H 2008Proceedings of the 2008 IEEE International Power Modulators and High-Voltage Conference Nevada, USA, May 27-31, 2008 p156

    [7]

    Altgilbers L L 2013Proceedings of 19th IEEE Pulsed Power Conference San Francisco USA, June 16-21, 2013 p1

    [8]

    Mock J W, Holf W H 1978J. Appl. Phys. 49 5846

    [9]

    Setchell R E 2005J. Appl. Phys. 97 013507

    [10]

    Tkach Y, Shkuratov S I 2002IEEE Trans. Plasma Sci. 30 1665

    [11]

    Jiang D D, Du J M, Gu Y, Feng Y J 2012J. Appl. Phys. 111 104102

    [12]

    Halpin W J 1968J. Appl. Phys. 39 3821

    [13]

    Lysne P C 1977J. Appl. Phys. 48 4565

    [14]

    Zhang F P, Liu Y S, Xie Q H, Liu G M, He H L 2015J. Appl. Phys. 117 134104

    [15]

    Liu G M, Zhang Y, Du J M, Wang H Y, Tan H, He H L 2007J. Funct. Mater. Dev. 13 0371(in Chinese)[刘高旻, 张毅, 杜金梅, 王海晏, 谭华, 贺红亮2007功能材料与器件学报13 0371]

    [16]

    Lysne P C 1983J. Appl. Phys. 54 3160

    [17]

    Zhang F P, He H L, Liu G M, Liu Y S, Yu Y, Wang Y G 2013J. Appl. Phys. 113 183501

  • [1]

    Neilson F W 1957Bull. Am. Phys. Soc. 2 302

    [2]

    Liu G M, Liu Y S, Zhang Y, Du J M, He H L 2006Mater. Rev. 20 74(in Chinese)[刘高旻, 刘雨生, 张毅, 杜金梅, 贺红亮2006材料导报20 74]

    [3]

    Alberta E F, Michaud B, Hackenberger W S, Freeman B, Hemmert D J, Stults A H, Altgilbers L L 2009Proceedings of 17th IEEE Pulsed Power ConferenceWashington, USA, June 28-July 2, 2009 p161

    [4]

    Shkuratov S I, Baird J, Talantsev E F 2011Rev. Sci. Instrum. 82 086107

    [5]

    Shkuratov S I, Baird J, Talantsev E F 2012Rev. Sci. Instrum. 83 076104

    [6]

    Stults A H 2008Proceedings of the 2008 IEEE International Power Modulators and High-Voltage Conference Nevada, USA, May 27-31, 2008 p156

    [7]

    Altgilbers L L 2013Proceedings of 19th IEEE Pulsed Power Conference San Francisco USA, June 16-21, 2013 p1

    [8]

    Mock J W, Holf W H 1978J. Appl. Phys. 49 5846

    [9]

    Setchell R E 2005J. Appl. Phys. 97 013507

    [10]

    Tkach Y, Shkuratov S I 2002IEEE Trans. Plasma Sci. 30 1665

    [11]

    Jiang D D, Du J M, Gu Y, Feng Y J 2012J. Appl. Phys. 111 104102

    [12]

    Halpin W J 1968J. Appl. Phys. 39 3821

    [13]

    Lysne P C 1977J. Appl. Phys. 48 4565

    [14]

    Zhang F P, Liu Y S, Xie Q H, Liu G M, He H L 2015J. Appl. Phys. 117 134104

    [15]

    Liu G M, Zhang Y, Du J M, Wang H Y, Tan H, He H L 2007J. Funct. Mater. Dev. 13 0371(in Chinese)[刘高旻, 张毅, 杜金梅, 王海晏, 谭华, 贺红亮2007功能材料与器件学报13 0371]

    [16]

    Lysne P C 1983J. Appl. Phys. 54 3160

    [17]

    Zhang F P, He H L, Liu G M, Liu Y S, Yu Y, Wang Y G 2013J. Appl. Phys. 113 183501

  • [1] 王金玲, 张昆, 林机, 李慧军. 二维激子-极化子凝聚体中冲击波的产生与调控.  , 2024, 73(11): 119601. doi: 10.7498/aps.73.20240229
    [2] 王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析.  , 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [3] 李鸿明, 董闯, 王清, 李晓娜, 赵亚军, 周大雨. 电阻率与强度性能的关联及铜合金性能分区.  , 2019, 68(1): 016101. doi: 10.7498/aps.68.20181498
    [4] 李蕊, 左小伟, 王恩刚. 时效Ag-7wt.%Cu合金的微观组织、电阻率和硬度.  , 2017, 66(2): 027401. doi: 10.7498/aps.66.027401
    [5] 刘雅洁. 直接利用磁场和温度精确确定磁性材料La0.67Ca0.33MnO3和Pr0.7Sr0.3MnO3的电阻率.  , 2013, 62(1): 017601. doi: 10.7498/aps.62.017601
    [6] 喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮. 多孔脆性介质冲击波压缩破坏的细观机理和图像.  , 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [7] 王峰, 彭晓世, 梅鲁生, 刘慎业, 蒋小华, 丁永坤. 基于速度干涉仪的冲击波精密调速实验技术研究.  , 2012, 61(13): 135201. doi: 10.7498/aps.61.135201
    [8] 谌岩, 刘琳, 刘建华, 张瑞军. 高压处理对Cu75.15Al24.85合金组织与电阻率的影响.  , 2012, 61(17): 176103. doi: 10.7498/aps.61.176103
    [9] 王峰, 彭晓世, 刘慎业, 蒋小华, 徐涛, 丁永坤, 张保汉. 三明治靶型在间接驱动冲击波实验中的应用.  , 2011, 60(11): 115203. doi: 10.7498/aps.60.115203
    [10] 冯宁博, 谷岩, 刘雨生, 聂恒昌, 陈学锋, 王根水, 贺红亮, 董显林. 冲击波加载下孔隙率对Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 铁电陶瓷去极化性能的影响.  , 2010, 59(12): 8897-8902. doi: 10.7498/aps.59.8897
    [11] 樊飞, 班春燕, 王洋, 巴启先, 崔建忠. 普通铸造和低频电磁铸造7050铝合金电阻率-温度特性的研究.  , 2009, 58(1): 638-643. doi: 10.7498/aps.58.638
    [12] 戴中华, 姚熹, 徐卓. 直流偏压对压力诱导反铁电陶瓷去极化性能的影响.  , 2009, 58(5): 3520-3524. doi: 10.7498/aps.58.3520
    [13] 俞宇颖, 谭 华, 胡建波, 戴诚达, 陈大年, 王焕然. 冲击波作用下铝的等效剪切模量.  , 2008, 57(4): 2352-2357. doi: 10.7498/aps.57.2352
    [14] 别少伟, 江建军, 马 强, 杜 刚, 袁 林, 邸永江, 冯则坤, 何华辉. 高电阻率多层纳米颗粒膜软磁特性及微波磁导率.  , 2008, 57(4): 2514-2518. doi: 10.7498/aps.57.2514
    [15] 蒋冬冬, 杜金梅, 谷 岩, 冯玉军. 冲击波加载下PZT 95/5铁电陶瓷的电阻率研究.  , 2008, 57(1): 566-570. doi: 10.7498/aps.57.566
    [16] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能.  , 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [17] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究.  , 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [18] 汪 渊, 徐可为. Cu-W薄膜表面形貌的分形表征与电阻率.  , 2004, 53(3): 900-904. doi: 10.7498/aps.53.900
    [19] 龙云泽, 陈兆甲, 张志明, 万梅香, 郑 萍, 王楠林, 贺朝会, 耿 斌, 杨海亮, 陈晓华, 王燕萍, 李国政. 纳米管结构聚苯胺的电阻率和磁化率.  , 2003, 52(1): 175-179. doi: 10.7498/aps.52.175
    [20] 王强, 陆坤权, 李言祥. 液态InSb电阻率和热电势与温度的关系.  , 2001, 50(7): 1355-1358. doi: 10.7498/aps.50.1355
计量
  • 文章访问数:  6339
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-30
  • 修回日期:  2016-11-26
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map