搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝纳米晶的低温导电特性研究

孙丽俊 代飞 罗江山 易勇 杨蒙生 张继成 黎军 雷海乐

引用本文:
Citation:

铝纳米晶的低温导电特性研究

孙丽俊, 代飞, 罗江山, 易勇, 杨蒙生, 张继成, 黎军, 雷海乐

Electrical resistivity of nanostructured aluminum at low temperature

Sun Li-Jun, Dai Fei, Luo Jiang-Shan, Yi Yong, Yang Meng-Sheng, Zhang Ji-Cheng, Li Jun, Lei Hai-Le
PDF
导出引用
  • 采用真空热压技术将电磁感应加热-自悬浮定向流法制备的铝纳米粉末压制成块体样品. 通过X射线衍射、透射电子显微镜、扫描电子显微镜及X射线能谱分析了铝纳米晶的微观结构, 并用四探针法测量了不同温度下(8-300 K)样品的电阻率, 研究了铝纳米晶的电阻率() 随温度的变化规律. 结果表明: 由于晶界(非晶氧化铝)对电子的散射以及晶界声子对电子的散射效应, 低温下(40 K), 铝纳米晶的本征电阻率随温度变化关系明显不同于粗晶铝, 不仅呈现出T4变化, 还表现出显著的T3 变化规律. 因晶界等缺陷和非晶氧化铝杂质对电子的散射, 铝纳米晶残余电阻率比粗晶铝电阻率大5-6 个数量级.
    The nanostructured materials have been revealed to have exclusive physical and chemical properties due to their quantum-size effects, small-size effects and a large fraction of grain boundaries. Especially, the grain boundaries play an important role in the electrical resistivity of nanostructured metal. We use the four-point probe method to measure the values of electrical resistivity () of the nanostructured aluminum samples and the coarse-grained bulk aluminum samples at temperature (T) ranging from 8 K to 300 K to explore the relationship between the electrical resistivity and temperature. The aluminum nanoparticles produced by the flow-levitation method through electromagnetic induction heating are compacted into nanostructured samples in vacuum by the hot pressing and sintering technology. The microstructures of all nanostructured aluminum samples are analyzed by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope with the energy-dispersive spectrometer (SEM-EDS). The densities of all nanostructured aluminum samples are measured by using the Archimedes method (the medium is absolute alcohol). The experimental results show that the shape of aluminum nanoparticles is found to keep spherical from the SEM images and the relative density of all nanostructured aluminum samples is about 93% of the coarse-grained bulk aluminum. The XRD spectra state that the face-centered cubic (fcc) phase dominates the samples and no diffraction peak related to impurities appears in the XRD spectrum for each of all nanostructured aluminum samples. Amorphous alumina layers (about 2 nm thick) are found to surround the aluminum nanoparticles and hence connect the grains in the nanostructured aluminum as shown in the high-resolution TEM images. Owing to the scattering of grain boundaries on electrons and the phonon-electron scattering at grain boundaries, the electrical resistivity is far larger in the nanostructured aluminum than in the coarse-grained bulk aluminum and the relationship between the electrical resistivity and temperature for nanostructured aluminum shows a different feature from that for the coarse-grained bulk aluminum. Although the temperature dependent electrical resistivity ((T)) is a function of T4 at low temperatures for the coarse-grained bulk aluminum, it varies with the temperature not only according to the relation T4, but also according to the relation T3 for the nanostructured aluminum. The residual resistivity (0) of the nanostructured aluminum sample is about 5.510-4m, 5-6 orders magnitude larger than that of the coarse-grained bulk aluminum (2.0110-10m) due to the scattering of both the grain boundaries and amorphous alumina on electrons therein.
      通信作者: 雷海乐, hailelei@caep.ac.cn
      Corresponding author: Lei Hai-Le, hailelei@caep.ac.cn
    [1]

    Okuda S, Tang F 1995 Nanostruct. Mater. 6 585

    [2]

    Kumar K S, van Swygenhoven H, Suresh S 2003 Acta. Mater. 51 5743

    [3]

    Ederth J, Kish L B, Olsson E, Granqvist C G 2002 J. Appl. Phys. 91 1529

    [4]

    Andrews P V 1965 Phys. Lett. 19 558

    [5]

    Huang Y K, Menovsky A A, de Boer F R 1993 Nanostruct. Mater. 2 505

    [6]

    Riedel S, Rber J, GeBner T 1997 Microelectron. Eng. 33 165

    [7]

    Okram G S, Soni A, Rawat R 2008 Nanotechnology 19 185711

    [8]

    Zeng H, Wu Y, Zhang J X, Kuang C J, Yue M, Zhou S X 2013 Prog. Nal. Sci.: Mater. Int. 23 18

    [9]

    Ziman J M 1960 Electrons and Phonons (Oxford: Clarendon Press) pp334-335

    [10]

    Bid A, Bora A, Raychaudhuri A K 2006 Phys. Rev. B 74 035426

    [11]

    Charles K (translated by Xiang J Z, Wu X H) 2005 Introduction to Solid State Physics (Beijing: Chemical Industry Press) p105 (in Chinese) [基泰尔 著, (项金钟, 吴兴惠 译)2005 固体物理导论 (北京:化学工业出版社)第105页

    [12]

    Moussouros P K, Kos J F 1977 Can. J. Phys. 55 2071

    [13]

    Qian L H, Lu Q H, Kong W J, Lu K 2004 Scripta Mater. 50 1407

    [14]

    Barmak K, Darbal A, Ganesh K J, Ferreira P J, Rickman J M, Sun T, Yao B, Warren A P, Coffey K R 2014 J. Vac. Sci. Technol. A 32 061503

    [15]

    Arenas C, Henriquez R, Moraga L, Munoz E, Munoz R C 2015 Appl. Surf. Sci. 329 184

    [16]

    Mayadas A F, Shatzkes M1970 Phys. Rev. B 1 1382

    [17]

    Wei J J, Li C Y, Tang Y J, Wu W D, Yang X D 2003 High Power Laser and Particle beams 15 359 (in chinese) [韦军建, 李超阳, 唐永建, 吴卫东, 杨向东 2003 强激光与离子束 15 359]

    [18]

    Li Y 2014 M. S. Dissertation (Mianyang: Southwest University of Science and Technology) (in Chinese) [李裕 2014 硕士学位论文(绵阳: 西南科技大学)]

    [19]

    Song Y H, Luo J S, Fan X Q, Xing P F, Yi Y, Yang M S, Li K, Lei H L 2015 At. Energ. Sci. Technol. 49 354 (in Chinese) [宋言红, 罗江山, 范晓强, 邢丕峰, 易勇, 杨蒙生, 李凯, 雷海乐 2015 原子能科学技术 49 354]

    [20]

    Huang K, Han R Q 2006 Solid State Physics (Beijing: Higher Education Press) p300 (in Chinese) [黄昆, 韩汝琦 2006 固体物理学(北京: 高等教育出版社)第300页]

    [21]

    Kasap S O (translated by Wang H) 2009 Principles of Electronic Materials and Devices (Vol.1) Third Edition (Xian: Xian Jiaotong University Press) pp98-108 (in Chinese) [萨法卡萨普 著 (汪宏 译)2009 电子材料与器件原理(上册) 第三版(西安: 西安交通大学出版社)第 98-108 页]

    [22]

    Tomchuk P M 1992 Int. J. Electron. 73 949

    [23]

    Hodak J H, Henglein A, Hartland G V 2000 J. Chem. Phys. 112 5942

    [24]

    Ma W G, Wang H D, Zhang X, Wang W 2010 J. Appl. Phys. 108 064308

    [25]

    Lu K 1996 Mater. Sci. Eng. 16 161221

    [26]

    Van Hove M A, Weinberg W H, Chan C M 1986 Low-energy Electron Diffraction (Berlin: Springer-Verlag) pp45-48

    [27]

    Hu X, Wang G, Wu W, Jiang P, Zi J 2001 J. Phys.: Condens. Matter 13 835

    [28]

    Lei H L, Li J, Liu Y Q, Liu X 2013 Europhys. Lett. 101 46001

    [29]

    Kubakaddi S S 2007 Phy. Rev. B 75 075309

    [30]

    Kara A, Rahman T S 1998 Phys. Rev. Lett. 81 1453

    [31]

    Dobierzewska-Mozrzymas E, Warkusz F 1979 Electrocomponent Sci. Technol. 5 223

    [32]

    Berry R J 1972 Phys. Rev. B 6 2994

    [33]

    Dworin L 1971 Phys. Rev. Lett. 26 1244

  • [1]

    Okuda S, Tang F 1995 Nanostruct. Mater. 6 585

    [2]

    Kumar K S, van Swygenhoven H, Suresh S 2003 Acta. Mater. 51 5743

    [3]

    Ederth J, Kish L B, Olsson E, Granqvist C G 2002 J. Appl. Phys. 91 1529

    [4]

    Andrews P V 1965 Phys. Lett. 19 558

    [5]

    Huang Y K, Menovsky A A, de Boer F R 1993 Nanostruct. Mater. 2 505

    [6]

    Riedel S, Rber J, GeBner T 1997 Microelectron. Eng. 33 165

    [7]

    Okram G S, Soni A, Rawat R 2008 Nanotechnology 19 185711

    [8]

    Zeng H, Wu Y, Zhang J X, Kuang C J, Yue M, Zhou S X 2013 Prog. Nal. Sci.: Mater. Int. 23 18

    [9]

    Ziman J M 1960 Electrons and Phonons (Oxford: Clarendon Press) pp334-335

    [10]

    Bid A, Bora A, Raychaudhuri A K 2006 Phys. Rev. B 74 035426

    [11]

    Charles K (translated by Xiang J Z, Wu X H) 2005 Introduction to Solid State Physics (Beijing: Chemical Industry Press) p105 (in Chinese) [基泰尔 著, (项金钟, 吴兴惠 译)2005 固体物理导论 (北京:化学工业出版社)第105页

    [12]

    Moussouros P K, Kos J F 1977 Can. J. Phys. 55 2071

    [13]

    Qian L H, Lu Q H, Kong W J, Lu K 2004 Scripta Mater. 50 1407

    [14]

    Barmak K, Darbal A, Ganesh K J, Ferreira P J, Rickman J M, Sun T, Yao B, Warren A P, Coffey K R 2014 J. Vac. Sci. Technol. A 32 061503

    [15]

    Arenas C, Henriquez R, Moraga L, Munoz E, Munoz R C 2015 Appl. Surf. Sci. 329 184

    [16]

    Mayadas A F, Shatzkes M1970 Phys. Rev. B 1 1382

    [17]

    Wei J J, Li C Y, Tang Y J, Wu W D, Yang X D 2003 High Power Laser and Particle beams 15 359 (in chinese) [韦军建, 李超阳, 唐永建, 吴卫东, 杨向东 2003 强激光与离子束 15 359]

    [18]

    Li Y 2014 M. S. Dissertation (Mianyang: Southwest University of Science and Technology) (in Chinese) [李裕 2014 硕士学位论文(绵阳: 西南科技大学)]

    [19]

    Song Y H, Luo J S, Fan X Q, Xing P F, Yi Y, Yang M S, Li K, Lei H L 2015 At. Energ. Sci. Technol. 49 354 (in Chinese) [宋言红, 罗江山, 范晓强, 邢丕峰, 易勇, 杨蒙生, 李凯, 雷海乐 2015 原子能科学技术 49 354]

    [20]

    Huang K, Han R Q 2006 Solid State Physics (Beijing: Higher Education Press) p300 (in Chinese) [黄昆, 韩汝琦 2006 固体物理学(北京: 高等教育出版社)第300页]

    [21]

    Kasap S O (translated by Wang H) 2009 Principles of Electronic Materials and Devices (Vol.1) Third Edition (Xian: Xian Jiaotong University Press) pp98-108 (in Chinese) [萨法卡萨普 著 (汪宏 译)2009 电子材料与器件原理(上册) 第三版(西安: 西安交通大学出版社)第 98-108 页]

    [22]

    Tomchuk P M 1992 Int. J. Electron. 73 949

    [23]

    Hodak J H, Henglein A, Hartland G V 2000 J. Chem. Phys. 112 5942

    [24]

    Ma W G, Wang H D, Zhang X, Wang W 2010 J. Appl. Phys. 108 064308

    [25]

    Lu K 1996 Mater. Sci. Eng. 16 161221

    [26]

    Van Hove M A, Weinberg W H, Chan C M 1986 Low-energy Electron Diffraction (Berlin: Springer-Verlag) pp45-48

    [27]

    Hu X, Wang G, Wu W, Jiang P, Zi J 2001 J. Phys.: Condens. Matter 13 835

    [28]

    Lei H L, Li J, Liu Y Q, Liu X 2013 Europhys. Lett. 101 46001

    [29]

    Kubakaddi S S 2007 Phy. Rev. B 75 075309

    [30]

    Kara A, Rahman T S 1998 Phys. Rev. Lett. 81 1453

    [31]

    Dobierzewska-Mozrzymas E, Warkusz F 1979 Electrocomponent Sci. Technol. 5 223

    [32]

    Berry R J 1972 Phys. Rev. B 6 2994

    [33]

    Dworin L 1971 Phys. Rev. Lett. 26 1244

  • [1] 高丰, 李欢庆, 宋卓, 赵宇宏. 三模晶体相场法研究应变诱导石墨烯晶界位错演化.  , 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [2] 陈伟龙, 郭榕榕, 仝钰申, 刘莉莉, 周圣岚, 林金海. 亚禁带光照对CdZnTe晶体中晶界电场分布的影响.  , 2022, 71(22): 226101. doi: 10.7498/aps.71.20220896
    [3] 郭灿, 赵玉平, 邓英远, 张忠明, 徐春杰. 运动晶界与调幅分解相互作用过程的相场法研究.  , 2022, 71(7): 078101. doi: 10.7498/aps.71.20211973
    [4] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟.  , 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [5] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟.  , 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [6] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟.  , 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [7] 李裕, 罗江山, 王柱, 杨蒙生, 邢丕峰, 易勇, 雷海乐. 铝纳米晶的正电子湮没研究.  , 2014, 63(24): 247803. doi: 10.7498/aps.63.247803
    [8] 龙建, 王诏玉, 赵宇龙, 龙清华, 杨涛, 陈铮. 不同对称性下晶界结构演化及微观机理的晶体相场法研究.  , 2013, 62(21): 218101. doi: 10.7498/aps.62.218101
    [9] 郑宗文, 徐庭栋, 王凯, 邵冲. 晶界滞弹性弛豫理论的现代进展.  , 2012, 61(24): 246202. doi: 10.7498/aps.61.246202
    [10] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质.  , 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [11] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究.  , 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [12] 陈贤淼, 宋申华. 高温塑性变形引起的P非平衡晶界偏聚.  , 2009, 58(13): 183-S188. doi: 10.7498/aps.58.183
    [13] 别少伟, 江建军, 马 强, 杜 刚, 袁 林, 邸永江, 冯则坤, 何华辉. 高电阻率多层纳米颗粒膜软磁特性及微波磁导率.  , 2008, 57(4): 2514-2518. doi: 10.7498/aps.57.2514
    [14] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能.  , 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [15] 刘贵立, 李荣德. ZA27合金晶界处铁、稀土元素的有序化与交互作用.  , 2006, 55(2): 776-779. doi: 10.7498/aps.55.776
    [16] 李培刚, 雷 鸣, 唐为华, 宋朋云, 陈晋平, 李玲红. 晶界对庞磁电阻颗粒薄膜的磁学和输运性能的影响.  , 2006, 55(5): 2328-2332. doi: 10.7498/aps.55.2328
    [17] 周 昀, 龙云泽, 陈兆甲, 张志明, 万梅香. 水和乙醇对纳米管结构聚苯胺电阻率的影响.  , 2005, 54(1): 228-232. doi: 10.7498/aps.54.228
    [18] 刘贵立, 李荣德. ZA27合金中稀土及铁的晶界偏聚与交互作用.  , 2004, 53(10): 3482-3486. doi: 10.7498/aps.53.3482
    [19] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究.  , 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [20] 龙云泽, 陈兆甲, 张志明, 万梅香, 郑 萍, 王楠林, 贺朝会, 耿 斌, 杨海亮, 陈晓华, 王燕萍, 李国政. 纳米管结构聚苯胺的电阻率和磁化率.  , 2003, 52(1): 175-179. doi: 10.7498/aps.52.175
计量
  • 文章访问数:  5818
  • PDF下载量:  267
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-10
  • 修回日期:  2016-04-16
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map