Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

All-solid-state high-power deep ultraviolet picosecond laser

OU Zuoyuan XU Sizhi LIU Xing GAO Yubo CHEN Junzhan HE Xingyu LU Haotian WU Chonghao GUO Chunyu GUO Li XU Wu LUE Qitao RUAN Shuangchen

Citation:

All-solid-state high-power deep ultraviolet picosecond laser

OU Zuoyuan, XU Sizhi, LIU Xing, GAO Yubo, CHEN Junzhan, HE Xingyu, LU Haotian, WU Chonghao, GUO Chunyu, GUO Li, XU Wu, LUE Qitao, RUAN Shuangchen
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Deep ultraviolet (DUV) picosecond lasers, operating in the 200–280 nm wavelength range, offer significant advantages, such as high photon energy and high resolution. These attributes make them highly promising for applications like semiconductor detection, ensuring the production of high-quality, defect-free semiconductor devices, as well as for advanced scientific research and industrial processing. High-power DUV picosecond lasers are typically generated via nonlinear frequency conversion of infrared lasers based on master oscillator power amplifier (MOPA) configurations. Among the various DUV laser technologies, systems based on β-BBO crystals are particularly valued for their simple design and cost efficiency. However, linear and two-photon absorption, as well as dynamic color center formation in BBO, are significant limitations for high-power, high-repetition-rate UV generation, leading to thermal effects. Hence, it is important to carefully study the performance characteristics of BBO for high-power, high-repetition-rate pulse generation in the UV at 266 nm.
    This study presents a high-power, all-solid-state DUV picosecond laser developed using a 1064 nm Nd:YVO4 MOPA amplification architecture. The experimental setup employed a 50 mW, 7.8 ps, 20 MHz all-fiber SESAM mode-locked laser as the seed source, achieving an amplified output power of 140 W with a pulse duration of 8.33 ps at 1064 nm via MOPA. In the nonlinear frequency conversion process, the amplified laser pulses were initially focused onto an LBO crystal for second harmonic generation (SHG). Precise temperature control of the LBO crystal enabled the generation of a 532 nm output with 73 W of power and a pulse duration of 6.93 ps, while achieving a conversion efficiency of 52.64%. Two-photon absorption is a key factor limiting the further enhancement of deep ultraviolet (DUV) laser power. By investigating the transmittance and temperature rise of a high-power dual-wavelength laser in a β-BBO crystal, the results indicate that strong two-photon absorption occurs under high-power DUV irradiation. This absorption induces significant thermal effects, resulting in temperature gradients within the crystal and leading to phase mismatch, which severely impacts frequency conversion efficiency and output stability.
    To address this issue and further increase the DUV output power, a large-spot pumping scheme (spot size: 1.5 mm × 1 mm) is adopted in this work. Under a pump peak power density of less than 1.11 GW/cm
    , the thermal gradient caused by two-photon absorption is effectively suppressed, enabling a maximum fourth-harmonic output power of 11 W. The corresponding single-pulse energy reaches 13.75 μJ. The root mean square (RMS) jitter, measured over an 8-hour period, was < 0.96%.
    This all-solid-state DUV laser demonstrates excellent performance characteristics, including high average power, stability, resolution, and peak power, making it a strong candidate for applications requiring efficient and high-precision processing or detection. By further increasing the pump power and optimizing the temperature control system, the output power of the laser can be significantly enhanced, broadening its applicability and competitiveness in high-end fields such as semiconductor manufacturing, advanced research, and industrial processing.
  • [1]

    Liu K, Li H, Qu S Z, Liang H K, Wang Q J, Zhang Y 2020 Optics Express 28 18360

    [2]

    Wen N, Zhang S J, Zong N, Gao H W, Bo Y, Peng Q J, Cui D F, Xu Zu Y 2022 Optica Advanced Photonics Congress 2022, Maastricht, Limburg Netherlands, July 24-28, 2022 NpTu1G 6

    [3]

    Mutailipu M, Pan S 2020 Angewandte Chemie International Edition 59 20302

    [4]

    Zhu J L, Liu J M, Xu T L, Yuan S, Zhang Z X, Jiang H, Gu H G, Zhou R J, Liu S Y 2022 International Journal of Extreme Manufacturing 4 032001

    [5]

    Meshulach D, Dolev I, Yamazaki Y, Tsuchiya K, Kaneko M, Yoshino K, Fujii T 2010 Metrology, Inspection, and Process Control for Microlithography XXIV. SPIE San Jose, California, United States, February 21-25 7638 195

    [6]

    Allaria E, Castronovo D, Cinquegrana P, Craievich P, Dal Forno Massimo, Danailov MB, D'Auria G, Demidovich A, De Ninno G, Di Mitri S, Diviacco B, Fawley WM, Ferianis M, Ferrari E, Froehlich L, Gaio G, Gauthier D, Giannessi L, Ivanov R, Mahieu B, Mahne N, Nikolov I, Parmigiani F, Penco G, Raimondi L, Scafuri C, Serpico C, Sigalotti P, Spampinati S,Spezzani C, Svandrlik C. Svetina M, Trovo M, Veronese M, Zangrando D, Zangrando M 2013 Nature Photonics 7 913

    [7]

    Cinquegrana P, Demidovich A, Kurdi G, Nikolov I, Sigalotti P, Susnjar P, Danailov MB 2021 High Power Laser Science and Engineering 9 e61

    [8]

    Tanaka S, Arakawa M, Fuchimuka A, Sasaki Y, Onose T, Kamba Y, Igarashi H, Qu C, Tamiya M, Oizumi H, Ito S, Kakizaki K, Xuan H W, Zhao Z G, Kobayashi Y, Mizoguchi H 2016 Solid State Lasers XXV:Technology and Devices. SPIE San Francisco, California, United States February 13-18 9726 424

    [9]

    Fujimoto J, Kobayashi M, Kakizaki K, Oizumi H, Mimura T, Matsunaga T, Mizoguchi H 2017 High-Power Laser Materials Processing:Applications, Diagnostics, and Systems VI. SPIE San Francisco, California, United States January28-February 2 10097 234

    [10]

    Cui Z J, Sun M Y, Liu De'an, Zhu, J Q 2022 Optics Express 30 43354

    [11]

    Liu Q, Yan X P, Fu X, Gong M, Wang D S 2008 Laser Physics Letters 6 203

    [12]

    Wang Z W, Cao X C, Zhang Y L, Cheng D L, Jin P X, Lu H D 2024 Chinese Journal of Lasers 51 1401003(in Chinese)[王子文, 曹雪辰, 张艳林, 程东林, 靳丕铦, 卢华东 2024 中国激光 51 1401003]

    [13]

    He J L, Lu X Q, Jia Y L, Man B Y, Zhu S N, Zhu Y Y 2000 Acta Phys. Sin. 49 2106(in Chinese)[何京良, 卢兴强, 贾玉磊, 满宝元, 祝世宁, 朱永元 2000 49 2106]

    [14]

    Wang N, Zhang J Y, Yu H J, Lin X C, Yang G W 2022 Optics Express 30 5700

    [15]

    Chen G Z, Shen Y, Liu Q, Zou H X 2014 Acta Phys. Sin. 63 054204(in Chinese)[陈国柱, 沈咏, 刘曲, 邹宏新 2014 63 054204]

    [16]

    Zheng J Q, Cong Z H, Liu Z J, Wang S, Zhao Z G 2021 Chinese Journal of Lasers 48 1201008(in Chinese)[郑佳琪, 丛振华, 刘兆军, 王 上, 赵智刚 2021 中国激光 48 1201008]

    [17]

    Orii Y, Kohno K, Tanaka H, Yoshimura M, Mori Y, Nishimae J, Shibuya K 2022 Optics Express 30 11797

    [18]

    Orii Y, Yoshii K, Kohno K, Tanaka H, Shibuya K, Okada G, Mori Y, Nishimae J, Yoshimura M 2023 Optics Express 31 14705

    [19]

    Yu H H, Zhang Z T, Xuan H W 2024 Chinese Journal of Lasers 51 0701020(in Chinese)[俞航航, 张志韬, 玄洪文 2024 中国激光 51 0701020]

    [20]

    Willenberg B, Brunner F, Phillips C R, Keller U 2020 Optica 7 485

    [21]

    Kumar S C, Casals J C, Wei J X, Ebrahim-Zadeh M 2015 Optics Express 23 28091

    [22]

    Takahashi M, Osada A, Dergachev A, Moulton P F, Cadatal-Raduban M, Shimizu T, Sarukura N 2011 Journal of crystal growth 318 606

    [23]

    R Bhandari, T Taira, A Miyamoto, Y Furukawa, T Tago 2012 Optical Materials express 2 907

  • [1] Cheng Jia, Wu Ya-Dong, Yan Ri, Peng Xue-Fang, Zhu Ren-Jiang, Wang Tao, Jiang Li-Dan, Tong Cun-Zhu, Song Yan-Rong, Zhang Peng. Tunable ultraviolet laser based on intracavity third harmonic generation of external cavity surface emitting laser. Acta Physica Sinica, doi: 10.7498/aps.73.20231923
    [2] Ruan Yuan-Dong, Zhang Zhi-Hao, Jia Jiang-Xie, Gu Yu-Ning, Zhang Shan-Duan, Cui Xu-Gao, Hong Wei, Bai Yan-Zheng, Tian Peng-Fei. Application of ultraviolet light sources in charge management systems for space gravitational wave detection. Acta Physica Sinica, doi: 10.7498/aps.73.20241115
    [3] Shi Liang-Zhu, Zhang Meng, Chu Yu-Xi, Liu Bo-Wen, Hu Ming-Lie. 206 nm deep ultraviolet laser generated from fifth harmonic of femtosecond fiber laser. Acta Physica Sinica, doi: 10.7498/aps.72.20230877
    [4] Wang Chen, An Hong-Hai, Xiong Jun, Fang Zhi-Heng, Ji Yu, Lian Chang-Wang, Xie Zhi-Yong, Guo Er-Fu, He Zhi-Yu, Cao Zhao-Dong, Wang Wei, Yan Rui, Pei Wen-Bing. Spectral structures of backward stimulated Brillouin scattering driven by a picosecond laser. Acta Physica Sinica, doi: 10.7498/aps.70.20210568
    [5] Wu Fang, Bu Yang, Liu Zhi-Fan, Wang Shao-Qing, Li Si-Kun, Wang Xiang-Zhao. Design and analysis of bilayer metallic grating polarizer in deep ultraviolet band. Acta Physica Sinica, doi: 10.7498/aps.70.20201403
    [6] Lü Hao-Chang, Zhao Yun-Chi, Yang Guang, Dong Bo-Wen, Qi Jie, Zhang Jing-Yan, Zhu Zhao-Zhao, Sun Yang, Yu Guang-Hua, Jiang Yong, Wei Hong-Xiang, Wang Jing, Lu Jun, Wang Zhi-Hong, Cai Jian-Wang, Shen Bao-Gen, Yang Feng, Zhang Shen-Jin, Wang Shou-Guo. High resolution imaging based on photo-emission electron microscopy excited by deep ultraviolet laser. Acta Physica Sinica, doi: 10.7498/aps.69.20200083
    [7] Cheng Meng-Yao, Wang Zhao-Hua, He Hui-Jun, Wang Xian-Zhi, Zhu Jiang-Feng, Wei Zhi-Yi. Efficient third harmonic generation of 355 nm picosecond laser pulse. Acta Physica Sinica, doi: 10.7498/aps.68.20190513
    [8] Gai Min-Qiang, Wang Ying, Pan Shi-Lie. Exploration of the deep-ultraviolet nonlinear optical materials in the derivatives of KBe2BO3F2. Acta Physica Sinica, doi: 10.7498/aps.68.20182145
    [9] Meng Xiang-Hao, Liu Hua-Gang, Huang Jian-Hong, Dai Shu-Tao, Deng Jing, Ruan Kai-Ming, Chen Jin-Ming, Lin Wen-Xiong. Tunable deep ultraviolet femtosecond sum frequency laser based on Ba1-xB2-y-zO4SixAlyGaz crystal. Acta Physica Sinica, doi: 10.7498/aps.64.164205
    [10] Liu Huan, Gong Ma-Li. Compact LD end-pumped Nd:YAG intracavity frequency-tripled quasi-continuous 355 nm laser. Acta Physica Sinica, doi: 10.7498/aps.58.5443
    [11] Xue Chun-Rong, Yi Kui, Qi Hong-Ji, Shao Jian-Da, Fan Zheng-Xiu. Optical constants of fluoride films in the DUV range. Acta Physica Sinica, doi: 10.7498/aps.58.5035
    [12] Generation of single plasma channel in air. Acta Physica Sinica, doi: 10.7498/aps.56.7114
    [13] Zhao Shu-Lin, Zhu Bao-Qiang, Zhan Ting-Yu, Cai Xi-Jie, Liu Ren-Hong, Yang Lin, Zhang Zhi-Xiang, Bi Ji-Jun. Research on pulse shape properties of high-power Nd:glass laser frequency tripling. Acta Physica Sinica, doi: 10.7498/aps.55.4170
    [14] Wang Peng, Zhao Huan, Wang Zhao-Hua, Li De-Hua, Wei Zhi-Yi. Active synchronization of two independent femtosecond and picosecond lasers and sum frequency generation of two laser pulses. Acta Physica Sinica, doi: 10.7498/aps.55.4161
    [15] Liu Yun-Quan, Zhang Jie, Liang Wen-Xi, Wang Zhao-Hua. Theoretical and experimental studies on third harmonic generation of femtosecond Ti:sapphire laser. Acta Physica Sinica, doi: 10.7498/aps.54.1593
    [16] Ma Jing, Zhang Ruo-Bing, Liu Bo, Zhu Chen, Chai Lu, Zhang Wei-Li, Zhang Zhi-Gang, Wang Qing-Yue. Idler second harmonic generation in femtosecond BBO optical parametric amplification. Acta Physica Sinica, doi: 10.7498/aps.54.3675
    [17] Tao Zong-Ming, Zhang Yin-Chao, Lü Yong-Hui, Hu Shun-Xing, Shao Shi-Sheng, Cao Kai-Fa, Liu Xiao-Qin, Yue Gu-Ming, Hu Huan-Ling. Effect of stimulated Raman scattering pumped by fourth harmonic Nd:YAG laser in methane and analysis of its physical processes. Acta Physica Sinica, doi: 10.7498/aps.53.2589
    [18] Lv Tie-Zheng, Wang Tao, Qian Lie-Jia, Lu Xin, Wei Zhi-Yi, Zhang Jie. . Acta Physica Sinica, doi: 10.7498/aps.51.1268
    [19] HE JING-LIANG, LU XING-QIANG, JIA YU-LEI, MAN BAO-YUAN, ZHU SHI-NING, ZHU YONG -YUAN. ALL-SOLID-STATE Nd:YVO4 UV LASER AT 266nm BY FOURTH HARMONIC USING A BBO CRYSTAL. Acta Physica Sinica, doi: 10.7498/aps.49.2106
    [20] MA HONG-LIANG, SUN KE-XU, YI RONG-QING, CUI YAN-LI, TANG DAO-YUAN, ZHENG ZHI-JIAN. STUDY OF SOFT X-RAY CONVERSION EFFICIENCY FROM FREQUENCY-TRIPLED 0.35μm LASER-IRRADIATED DIFFERENT MATERIAL PLANAR TARGETS. Acta Physica Sinica, doi: 10.7498/aps.45.1688
Metrics
  • Abstract views:  44
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  10 May 2025

/

返回文章
返回
Baidu
map