-
Ultraviolet laser has high frequency, short wavelength, large single-photon energy, and high spatial resolution, and has wide applications in many fields such as fine processing, life sciences, and spectroscopy. In this work, a wavelength tunable ultraviolet laser based on intracavity third harmonic generation from an external-cavity surface-emitting laser is reported. The W-type resonant cavity of the laser is composed of a distributed Bragg reflector (DBR) at the bottom of the gain chip, three plane-concave mirrors, and a rear plane mirror. On the arm containing the gain chip, a birefringent filter is inserted at the Brewster angle as the polarization and wavelength tuning element, which can also narrow the linewidth of the fundamental laser to a certain extent. A type-I phase-matched LBO crystal is placed on the beam waist between the folding mirrors M2 and M3 to convert the 980 nm fundamental laser into 490 nm blue light, and a type-I phase-matched BBO crystal is inserted in the beam waist near the rear mirror to produce a 327 nm ultraviolet output from the remained 980 nm fundamental laser and the frequency-doubled 490 nm second harmonic. Before the BBO crystal, a half-wave plate at 980 nm is employed to change the polarization of the fundamental laser, so as to meet the type-I phase-matching condition of the used BBO crystal. Owing to the larger nonlinear coefficient of the type-I phase-matched BBO crystal, and its obviously higher transmittance at 327 nm wavelength than the usually used LBO crystal, the output power is obtained to be 538 mW at 327 nm ultraviolet wavelength, corresponding to a conversion efficiency of 1.1% from pump light to ultraviolet laser. The experiment is performed under conditions of 15 ℃ temperature, 47 W absorbed pump power, 5 mm-length LBO and 5 mm-length BBO crystals. By using a 2 mm-thick birefringent filter as the tuning element, 34.1 nm tuning range of the 980 nm fundamental laser, 14.3 nm tuning range of the 490 nm second harmonic, and 8.6 nm tuning range of the 327 nm third harmonic are obtained. The ultraviolet laser exhibits good beam quality as well as acceptable power stability with the maximum power fluctuation less than 2% within 4.5 h.
-
Keywords:
- tunable /
- external-cavity surface-emitting laser /
- nonlinear frequency conversion /
- third harmonic generation
[1] 唐娟, 廖健宏, 蒙红云 2007 激光与光电子学进展 44 52
Google Scholar
Tang J, Liao J H, Meng H Y 2007 Laser Optoelectron. Prog. 44 52
Google Scholar
[2] 俞君, 曾智江, 朱三根 2008 红外 29 9
Google Scholar
Yu J, Zeng Z J, Zhu S G 2008 Infrared 29 9
Google Scholar
[3] 李林, 李正佳, 何艳艳 2005 激光杂志 6 1
Google Scholar
Li L, Li Z J, He Y Y 2005 Laser J. 6 1
Google Scholar
[4] Sasaki T, Mori Y, Yoshimura M 2000 Mat. Sci. Eng. R. 30 54
Google Scholar
[5] Wang C X, Wang G Y, Hicks A V 2006 Proc. SPIE 6100 19
Google Scholar
[6] Hodgson N, Li M, Held A 2003 Proc. SPIE 4977 281
Google Scholar
[7] Basov N G, Danilychev V A, Popov Y M 1970 JETP Lett. 12 329
[8] Rhodes C K 1979 Mol. Phys. 1 2
Google Scholar
[9] Oka M, Liu L Y, Wiechmann W 1995 IEEE J. Sel. Top. Quant. 1 859
Google Scholar
[10] Yap Y K, Inagaki M, Nakajima S 1996 Opt. Lett. 21 1348
Google Scholar
[11] Deyra L, Martial I 2014 Opt. Lett. 39 2236
Google Scholar
[12] Jewell J L, Harbison J P, Scherer A 1991 IEEE J. Quantum Electron. 27 1332
Google Scholar
[13] Crump P, Wenzel H, Erbert G 2012 Proc. SPIE 8241 222
Google Scholar
[14] Rahimi-Iman A 2016 J. Optics-UK 18 093003
Google Scholar
[15] Guina M, Rantamäki A, Härkönen A 2017 J. Phy. D Appl. Phys. 50 383001
Google Scholar
[16] Hastie J E, Morton L G, Dawson M D 2006 J. Opt. Soc. Am. B 1 109
[17] Jennifer E H, Morton L G, Kemp A J 2006 Appl. Phys. Lett. 89 061114
Google Scholar
[18] Schwarzbäck T, Kahle H, Eichfelder M 2011 J. Opt. Soc. Korea 1 22
Google Scholar
[19] Shu Q Z, Caprara A L, Berger J D 2009 Proc. SPIE 7193 339
Google Scholar
[20] Polanik M, Hirlinger A J 2016 Annu. Rep. 8 140
[21] Kaneda Y, Yarborough J M, Li L 2008 Opt. Lett. 33 1705
Google Scholar
[22] Meyer J T, Lukowski M L, Hessenius C 2021 Opt. Commun. 499 127255
Google Scholar
[23] Zondy J J 1991 Opt. Commun. 81 427
Google Scholar
[24] Nightingale J L,Becker R A, Willis P C 1987 Appl. Phys. Lett. 51 716
Google Scholar
[25] Smith A V, Armstrong D J, Alford W J 1998 J. Opt. Soc. Am. B 15 122
Google Scholar
-
图 6 (a)基频激光的光束质量M2因子, 插图为光强的二维分布图; (b)倍频激光的光束质量M2 因子, 插图为对应的二维光强分布图
Figure 6. (a) Beam quality M2 factor of the fundamental laser, the inset shows a 2-dimension distribution of the laser spot; (b) M2 factor of the frequency-doubled laser, and the 2-dimension distribution of the laser intensity is also shown as an inset.
-
[1] 唐娟, 廖健宏, 蒙红云 2007 激光与光电子学进展 44 52
Google Scholar
Tang J, Liao J H, Meng H Y 2007 Laser Optoelectron. Prog. 44 52
Google Scholar
[2] 俞君, 曾智江, 朱三根 2008 红外 29 9
Google Scholar
Yu J, Zeng Z J, Zhu S G 2008 Infrared 29 9
Google Scholar
[3] 李林, 李正佳, 何艳艳 2005 激光杂志 6 1
Google Scholar
Li L, Li Z J, He Y Y 2005 Laser J. 6 1
Google Scholar
[4] Sasaki T, Mori Y, Yoshimura M 2000 Mat. Sci. Eng. R. 30 54
Google Scholar
[5] Wang C X, Wang G Y, Hicks A V 2006 Proc. SPIE 6100 19
Google Scholar
[6] Hodgson N, Li M, Held A 2003 Proc. SPIE 4977 281
Google Scholar
[7] Basov N G, Danilychev V A, Popov Y M 1970 JETP Lett. 12 329
[8] Rhodes C K 1979 Mol. Phys. 1 2
Google Scholar
[9] Oka M, Liu L Y, Wiechmann W 1995 IEEE J. Sel. Top. Quant. 1 859
Google Scholar
[10] Yap Y K, Inagaki M, Nakajima S 1996 Opt. Lett. 21 1348
Google Scholar
[11] Deyra L, Martial I 2014 Opt. Lett. 39 2236
Google Scholar
[12] Jewell J L, Harbison J P, Scherer A 1991 IEEE J. Quantum Electron. 27 1332
Google Scholar
[13] Crump P, Wenzel H, Erbert G 2012 Proc. SPIE 8241 222
Google Scholar
[14] Rahimi-Iman A 2016 J. Optics-UK 18 093003
Google Scholar
[15] Guina M, Rantamäki A, Härkönen A 2017 J. Phy. D Appl. Phys. 50 383001
Google Scholar
[16] Hastie J E, Morton L G, Dawson M D 2006 J. Opt. Soc. Am. B 1 109
[17] Jennifer E H, Morton L G, Kemp A J 2006 Appl. Phys. Lett. 89 061114
Google Scholar
[18] Schwarzbäck T, Kahle H, Eichfelder M 2011 J. Opt. Soc. Korea 1 22
Google Scholar
[19] Shu Q Z, Caprara A L, Berger J D 2009 Proc. SPIE 7193 339
Google Scholar
[20] Polanik M, Hirlinger A J 2016 Annu. Rep. 8 140
[21] Kaneda Y, Yarborough J M, Li L 2008 Opt. Lett. 33 1705
Google Scholar
[22] Meyer J T, Lukowski M L, Hessenius C 2021 Opt. Commun. 499 127255
Google Scholar
[23] Zondy J J 1991 Opt. Commun. 81 427
Google Scholar
[24] Nightingale J L,Becker R A, Willis P C 1987 Appl. Phys. Lett. 51 716
Google Scholar
[25] Smith A V, Armstrong D J, Alford W J 1998 J. Opt. Soc. Am. B 15 122
Google Scholar
Catalog
Metrics
- Abstract views: 2659
- PDF Downloads: 62
- Cited By: 0