搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类KBe2BO3F2结构硼酸盐深紫外非线性光学材料的研究进展

盖敏强 王颖 潘世烈

引用本文:
Citation:

类KBe2BO3F2结构硼酸盐深紫外非线性光学材料的研究进展

盖敏强, 王颖, 潘世烈

Exploration of the deep-ultraviolet nonlinear optical materials in the derivatives of KBe2BO3F2

Gai Min-Qiang, Wang Ying, Pan Shi-Lie
PDF
HTML
导出引用
  • 利用非线性光学(NLO)晶体材料和变频技术, 可以把波长范围有限的激光光源扩展到紫外、深紫外区, 这已成为深紫外光源的热点研究方向. 然而, 目前限制深紫外全固态激光器发展和应用的关键问题是缺乏能够在该波段进行频率转换并且产业化应用的NLO晶体材料. 因此, 该领域的各国科学家都在积极探索并发展新一代的深紫外NLO晶体材料. 目前仅有KBe2BO3F2 (KBBF)晶体能够实现Nd:YAG的直接六倍频深紫外激光(波长为177.3 nm)输出. 然而, KBBF晶体存在严重的层状生长习性, 并且其原料氧化铍有剧毒, 从而极大地制约了其商业化生产和应用进程. 根据阴离子基团理论, 以BO3基团为基本结构单元形成的类[Be2BO3F]层状结构特征仍然是目前最有利于产生深紫外谐波的适宜结构之一, 因此, 基于KBBF层状结构进行分子工程设计, 并开发类KBBF结构的硼酸盐可能是探索新材料的优选策略. 本文通过回顾类KBBF结构硼酸盐深紫外NLO晶体的发展历程, 系统梳理该类晶体材料层状结构特点、不同层间连接方式和光学性能, 分析限制深紫外NLO晶体发展的主要因素, 讨论目前发展类KBBF结构硼酸盐深紫外NLO晶体材料的主要矛盾和解决策略, 以期对未来新材料的创新探索提供借鉴.
    The use of nonlinear optical crystal materials to extend the limited range of laser sources to the deep-ultraviolet (deep-UV, λ < 200 nm) regions by various frequency conversion techniques, has become an attractive field for generating deep-UV light. However, the lack of nonlinear optics (NLO) crystal materials capable of frequency conversion in the deep-UV light range, limits the development and application of deep-UV all-solid-state lasers. Therefore, scientists all over the world are actively exploring the new generation of deep-UV NLO crystal materials. At present, only the KBe2BO3F2 (KBBF) crystal is capable of generating deep-UV light through the direct sixth harmonic generation of the Nd:YAG laser. The infinite [Be2BO3F2] single layers, as the brilliant building blocks in the crystal structures of KBBF family, provide a relatively large second harmonic generation coefficient (d11 = 0.47 pm/V) and a sufficient birefringence (Δn = 0.07@1064 nm). However, the KBBF crystals have insurmountable intrinsic defects, such as the usage of high toxic beryllium oxide, and the serious layer growth habit, which greatly restrict its commercialization process. Since the layered structure of the KBBF crystal is still one of the most brilliant structures for generating deep-UV laser, an effective strategy is to change the interlayer connection mode and develop new NLO materials based on KBBF with less layering growth habit. In this paper, by reviewing the development history of borate deep-UV NLO crystals and the derivatives of KBBF, the relationship between layered structure and optical properties of different interlaminar connections of crystal materials is systematically analyzed. We discuss the main contradictions and solutions of the development of deep-UV NLO crystal materials which are similar to the KBBF structure. In order to provide a reference for the innovative exploration of new materials in the future, several design strategies are also proposed.
      通信作者: 潘世烈, slpan@ms.xjb.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 51602341, 51425206, 91622107)资助的课题.
      Corresponding author: Pan Shi-Lie, slpan@ms.xjb.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51602341, 51425206, 91622107).
    [1]

    Maiman T H 1960 Nature 187 493Google Scholar

    [2]

    Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 7 118Google Scholar

    [3]

    Zernike F, Berman P R 1966 Phys. Rev. Lett. 16 117Google Scholar

    [4]

    Rao K S, Yoon K H 2003 J. Mater. Sci. 38 391Google Scholar

    [5]

    Cyranoski D 2009 Nature 457 953Google Scholar

    [6]

    Yao W J, He R, Wang X Y, Lin Z S, Chen C T 2014 Adv. Opt. Mater. 2 411Google Scholar

    [7]

    陈创天, 刘丽娟, 王晓洋 2014 物理 43 520Google Scholar

    Chen C T, Liu L J, Wang X Y 2014 Physics 43 520Google Scholar

    [8]

    Tressaud A, Poeppelmeier K R 2016 Photonic and Electronic Properties of Fluoride Materials: Progress in Fluorine Science Series (Amsterdam: Elsevier)

    [9]

    Tran T T, Yu H W, Rondinelli J M, Poeppelmeier K R, Halasyamani P S 2016 Chem. Mater. 28 5238Google Scholar

    [10]

    Halasyamani P S, Zhang W G 2017 Inorg. Chem. 56 12077Google Scholar

    [11]

    Wu C, Yang G, Humphrey M G, Zhang C 2018 Coord. Chem. Rev. 375 459Google Scholar

    [12]

    Shen Y G, Zhao S G, Luo J H 2018 Coord. Chem. Rev. 366 1Google Scholar

    [13]

    Yang Y, Jiang X X, Lin Z S, Wu Y C 2017 Crystals (Basel) 7 951

    [14]

    Eimerl D, Davis L, Velsko S, Graham E, Zalkin A 1987 J. Appl. Phys. 62 1968Google Scholar

    [15]

    Chen C T, Wu Y C, Jiang A D, Wu B C, You G M, Li R K, Lin S J 1989 J. Opt. Soc. Am. B 6 616Google Scholar

    [16]

    卢嘉锡, 吴新涛, 陈长章, 程文旦, 梁敬魁 1997 科学通报 42 561Google Scholar

    Lu J X, Wu X T, Chen C Z, Chen W D, Liang J K 1997 Chin. Sci. Bull. 42 561Google Scholar

    [17]

    Krogh-Moe J 1960 Acta Crystallogr. 13 889Google Scholar

    [18]

    Mori Y, Kuroda I, Nakajima S, Sasaki T, Nakai S 1995 Appl. Phys. Lett. 67 1818Google Scholar

    [19]

    陈创天, 姚文娇 2011 光学学报 31 82

    Chen C T, Yao W J 2011 Acta Opt. Sin. 31 82

    [20]

    Mei L F, Wang Y B, Chen C T, Wu B 1993 J. Appl. Phys. 74 7014Google Scholar

    [21]

    Chen C T, Luo S Y, Wang X Y, Wang G L, Wen X H, Wu H X, Zhang X, Xu Z Y 2009 J. Opt. Soc. Am. B 26 1519Google Scholar

    [22]

    Huang H W, Chen C T, Wang X Y, Zhu Y, Wang G L, Zhang X, Wang L R, Yao J Y 2011 J. Opt. Soc. Am. B: Opt. Phys. 28 2186Google Scholar

    [23]

    Jones-Bey H 1998 Laser Focus World 34 127

    [24]

    陈创天, 许祖彦 2002 人工晶体学报 31 224Google Scholar

    Chen C T, Xu Z Y 2002 J. Synth. Cryst. 31 224Google Scholar

    [25]

    刘丽娟, 陈创天 2010 中国材料进展 29 16

    Liu L J, Chen C T 2010 Mater. Chin. 29 16

    [26]

    Tran T T, Young J, Rondinelli J M, Halasyamani P S 2017 J. Am. Chem. Soc. 139 1285Google Scholar

    [27]

    Tran T T, He J G, Rondinelli J M, Halasyamani P S 2015 J. Am. Chem. Soc. 137 10504Google Scholar

    [28]

    Zhao S G, Gong P F, Luo S Y, Bai L, Lin Z S, Tang Y Y, Zhou Y L, Hong M C, Luo J H 2015 Angew. Chem. Int. Ed. 127 4291Google Scholar

    [29]

    Zhao S G, Gong P F, Luo S Y, Lei B, Lin Z S, Ji C M, Chen T L, Hong M C, Luo J H 2014 J. Am. Chem. Soc. 136 8560Google Scholar

    [30]

    Li L, Wang Y, Lei B H, Han S J, Yang Z H, Poeppelmeier K R, Pan S L 2016 J. Am. Chem. Soc. 138 9101Google Scholar

    [31]

    Shen Y G, Yang Y, Zhao S G, Zhao B Q, Lin Z S, Ji C M, Li L N, Fu P, Hong M C, Luo J H 2016 Chem. Mater. 28 7110Google Scholar

    [32]

    Zhou Z Y, Qiu Y, Liang F, Palatinus L, Poupon M, Yang T, Cong R H, Lin Z S, Sun J L 2018 Chem. Mater. 30 2203Google Scholar

    [33]

    Song J L, Hu C L, Xu X, Kong F, Mao J G 2015 Angew. Chem. Int. Ed. 46 3679

    [34]

    Wu H P, Pan S L, Poeppelmeier K R, Li H Y, Jia D Z, Chen Z H, Fan X Y, Yang Y, Rondinelli J M, Luo H S 2011 J. Am. Chem. Soc. 133 7786Google Scholar

    [35]

    Wang Z J, Qiao H M, Su R B, Hu B, Yang X, He C, Long X 2018 Adv. Funct. Mater. 28 1804089Google Scholar

    [36]

    Sun Y Z, Li Z, Lee M H, Yang Z H, Pan S L, Sadeh B 2017 J. Phys. Soc. Jpn. 86 044401Google Scholar

    [37]

    Zhang B B, Han G P, Wang Y, Chen X L, Yang Z H, Pan S L 2018 Chem. Mater. 30 5397Google Scholar

    [38]

    Xiong L, Chen J, Lu J, Pan C Y, Wu L M 2018 Chem. Mater. 30 7823Google Scholar

    [39]

    Chen C T, Wang Y B, Wu B C, Wu K, Zeng W, Yu L 1995 Nature 373 322Google Scholar

    [40]

    Qi H, Chen C T 2001 Inorg. Chem. Commun. 4 565Google Scholar

    [41]

    Huang H W, Yao J Y, Lin Z S, Wang X Y, He R, Yao W J, Zhai N X, Chen C T 2011 Chem. Mater. 23 5457Google Scholar

    [42]

    Huang H W, Yao J Y, Lin Z S, Wang X Y, He R, Yao W J, Zhai N X, Chen C T 2011 Angew. Chem. Int. Ed. 123 9307Google Scholar

    [43]

    Guo S, Liu L J, Xia M J, Kang L, Huang Q, Li C, Wang X Y, Lin Z S, Chen C T 2016 Inorg. Chem. 47 6586

    [44]

    Wang S C, Ye N, Li W, Zhao D 2010 J. Am. Chem. Soc. 132 8779Google Scholar

    [45]

    Wang S C, Ye N 2011 J. Am. Chem. Soc. 133 11458Google Scholar

    [46]

    Huang H, Liu L, Jin S, Yao W, Zhang Y, Chen C 2013 J. Am. Chem. Soc. 135 18319Google Scholar

    [47]

    Guo S, Liang F, Liu L J, Xia M J, Fang Z, Wu R F, Wang X Y, Lin Z S, Chen C T 2017 New J. Chem. 41 4269Google Scholar

    [48]

    Peng G, Ye N, Lin Z S, Kang L, Pan S L, Zhang M, Lin C, Long X, Luo M, Chen Y 2018 Angew. Chem. Int. Ed. 57 8968Google Scholar

    [49]

    Guo S, Jiang X X, Xia M J, Liu L, Fang Z, Huang Q, Wu R, Wang X, Lin Z S, Chen C T 2017 Inorg. Chem. 56 11451Google Scholar

    [50]

    Hu Z G, Higashiyama T, Yoshimura M, Yap Y K, Mori Y, Sasaki T 1998 Jpn. J. Appl. Phys. 3 7

    [51]

    Tran T T, Koocher N Z, Rondinelli J M, Halasyamani P S 2017 Angew. Chem. Int. Ed. 56 2969Google Scholar

    [52]

    Ye N, Zeng W R, Wu B C, Chen C T 1998 Proc. SPIE-Int. Soc. Opt. Eng. p21

    [53]

    Hu Z G, Yoshimura M, Muramatsu K, Mori Y, Sasaki T 2002 Jpn. J. Appl. Phys. 41 1131Google Scholar

    [54]

    Zhao S G, Gong P F, Luo S Y, Liu S J, Li L N, Asghar M A, Khan T, Hong M, Lin Z S, Luo J H 2015 J. Am. Chem. Soc. 46 2207

    [55]

    Zhao B Q, Bai L, Li B X, Zhao S G, Shen Y G, Li X F, Ding Q R, Ji C M, Lin Z S, Luo J H 2017 Cryst. Growth Des. 18 1168

    [56]

    Yu H W, Young J, Wu H P, Zhang W, Rondinelli J M, Halasyamani S 2017 Adv. Opt. Mater. 5 1700840Google Scholar

    [57]

    Wu H P, Yu H W, Pan S L, Halasyamani P S 2017 Inorg. Chem. 56 8755Google Scholar

    [58]

    Zou G, Lin C, Jo H, Nam G, You T S, Ok K M 2016 Angew. Chem. Int. Ed. 55 12078Google Scholar

    [59]

    Luo M, Song Y X, Liang F, Ye N, Lin Z S 2018 Inorg. Chem. Front. 5 916Google Scholar

    [60]

    Yu H W, Koocher N, Rondinelli J, Halasyamani P S 2018 Angew. Chem. Int. Ed. 57 6100Google Scholar

    [61]

    Zhao S G, Zhang J, Zhang S Q, Sun Z H, Lin Z S, Wu Y C, Hong M C, Luo J H 2014 Inorg. Chem. 53 2521Google Scholar

    [62]

    Yu H W, Wu H P, Pan S L, Yang Z H, Hou X L, Su X, Jing Q, Poeppelmeier K R, Rondinelli J M 2014 J. Am. Chem. Soc. 136 1264Google Scholar

    [63]

    Yang G S, Gong P F, Lin Z S, Ye N 2016 Chem. Mater. 28 9122Google Scholar

    [64]

    Xia M J, Li R K 2016 J. Solid State Chem. 233 58Google Scholar

    [65]

    Chen Y N, Zhang M, Pan S L 2018 New J. Chem. 42 12365Google Scholar

    [66]

    Duan M H, Xia M J, Li R K 2018 Eur. J. Inorg. Chem. 2018 3686Google Scholar

    [67]

    Zhao S G, Gong P F, Bai L, Xu X, Zhang S Q, Sun Z H, Lin Z S, Hong M C, Chen C T, Luo J H 2014 Nat. Commun. 5 4019Google Scholar

    [68]

    Zhang B B, Shi G Q, Yang Z H, Zhang F F, Pan S L 2017 Angew. Chem. Int. Ed. 56 3916Google Scholar

    [69]

    Shi G Q, Wang Y, Zhang F F, Zhang B B, Yang Z H, Hou X L, Pan S L, Poeppelmeier K R 2017 J. Am. Chem. Soc. 139 10645Google Scholar

    [70]

    Wang Y, Zhang B B, Yang Z H, Pan S L 2018 Angew. Chem. Int. Ed. 57 2150Google Scholar

    [71]

    Wang X F, Wang Y, Zhang B B, Zhang F F, Yang Z H, Pan S L 2017 Angew. Chem. Int. Ed. 56 14119Google Scholar

    [72]

    Zhang Z Z, Wang Y, Zhang B B, Yang Z H, Pan S L 2018 Angew. Chem. Int. Ed. 57 6577Google Scholar

    [73]

    Qi H, Chen C T 2001 Chem. Lett. 30 352Google Scholar

    [74]

    沈耀国 2017 民营科技 6 56Google Scholar

    Shen Y G 2017 Pri.Tech. 6 56Google Scholar

    [75]

    陈创天 1976 25 146Google Scholar

    Chen C T 1976 Acta Phys. Sin. 25 146Google Scholar

    [76]

    陈创天 1977 26 486Google Scholar

    Chen C T 1977 Acta Phys. Sin. 26 486Google Scholar

    [77]

    陈创天 1977 26 124Google Scholar

    Chen C T 1977 Acta Phys. Sin. 26 124Google Scholar

    [78]

    陈创天 1978 27 41Google Scholar

    Chen C T 1978 Acta Phys. Sin. 27 41Google Scholar

    [79]

    Kang L, Luo S Y, Peng G, Ye N, Wu Y C, Chen C T, Lin Z S 2015 Inorg. Chem. 54 10533Google Scholar

    [80]

    Bian Q, Yang Z H, Wang Y C, Mutailipu M, Ma Y, Pan S 2018 Inorg. Chem. 57 5716Google Scholar

    [81]

    Huang Q, Liu L J, Wang X Y, Li R K, Chen C T 2016 Inorg. Chem. Commun. 55 12496Google Scholar

    [82]

    Atuchin V V, Bazarov B G, Gavrilova T A, Grossman V G, Molokeev M S, Bazarova Z G 2012 J. Alloys Compd. 515 119Google Scholar

    [83]

    Huang Q, Liu L J, Xia M J, Yang Y, Guo S, Wang X Y, Lin Z S, Chen C T 2017 Crystals 7 104Google Scholar

    [84]

    Hu Z G, Yoshimura M, Muramatsu K, Mori Y, Sasaki T 2002 Jpn. J. Appl. Phys., Part 2 41

    [85]

    Hu Z G, Yue Y C, Chen X A, Yao J Y, Wang J N, Lin Z S 2011 Solid State Sci. 13 875Google Scholar

    [86]

    Li R K, Chen P 2010 Inorg. Chem. 49 1561Google Scholar

    [87]

    Mutailipu M, Zhang M, Wu H P, Yang Z H, Shen Y H, Sun J L, Pan S L 2018 Nat. Commun. 9 3089Google Scholar

    [88]

    He M, Chen X L, Okudera H, Simon A 2005 Chem. Mater. 17 2193Google Scholar

    [89]

    Shen Y G, Zhao S G, Yang Y, Cao L L, Wang Z J, Zhao B Q, Sun Z H, Lin Z S, Luo J H 2017 Cryst. Growth Des. 17 4422Google Scholar

    [90]

    Fang Z, Jiang X X, Duan M H, Hou Z Y, Tang C C, Xia M J, Liu L J, Lin Z S, Fan F D, Bai L, Chen C T 2018 Chem. - Eur. J. 24 7856Google Scholar

    [91]

    盖敏强, 王颖, 潘世烈 2018 科学通报 63 998

    Gai M Q, Wang Y, Pan S L 2018 Chin. Sci. Bull. 63 998

    [92]

    Han G P, Wang Y, Zhang B B, Pan S L 2018 Chem.- Eur. J. 24 17638Google Scholar

    [93]

    Wang Y, Pan S L 2016 Coord. Chem. Rev. 323 15Google Scholar

    [94]

    Cakmak G, Nuss J, Jansen M 2009 Z. Anorg. Allg. Chem. 635 631Google Scholar

    [95]

    Pilz T, Jansen M 2011 Z. Anorg. Allg. Chem. 637 2148Google Scholar

    [96]

    Pilz T, Nuss H, Jansen M 2012 J. Solid State Chem. 186 104Google Scholar

    [97]

    Zhang Z Z, Wang Y, Zhang B B, Yang Z H, Pan S L 2018 Inorg. Chem. 57 4820Google Scholar

    [98]

    Mutailipu M, Zhang M, Zhang B B, Wang L Y, Yang Z H, Zhou X, Pan S L 2018 Angew. Chem. Int. Ed. 57 6095Google Scholar

    [99]

    Luo M, Liang F, Song Y X, Zhao D, Xu F, Ye N, Lin Z S 2018 J. Am. Chem. Soc. 140 3884Google Scholar

    [100]

    Mutailipu M, Zhang M, Zhang B B, Yang Z H, Pan S L 2018 Chem. Commun. 54 6308Google Scholar

    [101]

    Tang C C, Jiang X X, Yin W L, Liu L J, Xia M J, Huang Q, Song G M, Wang X Y, Lin Z S, Chen C T 2019 Dalton Trans. 48 21Google Scholar

    [102]

    史国强 2017 硕士学位论文 (北京: 中国科学院大学)

    Shi G Q 2017 M.S. Thesis(Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [103]

    Luo M, Liang F, Song Y X, Zhao D, Ye N, Lin Z S 2018 J. Am. Chem. Soc. 140 6814Google Scholar

    [104]

    Kang L, Lin Z S, Liu F, Huang B 2018 Inorg. Chem. 57 11146Google Scholar

    [105]

    Kang L, Liang F, Gong P F, Lin Z S, Liu F, Huang B 2018 Phys. Status Solidi RRL 12 1800276Google Scholar

  • 图 1  KBBF族晶体结构模型

    Fig. 1.  Crystal structure model of KBBF family.

    图 2  从KBBF 到Pb2BO3I的倍频效应演进

    Fig. 2.  Second harmonic generation evolution from KBBF to Pb2BO3I.

    图 3  NH4Be2BO3F2 (ABBF)晶体结构模型[79,80]

    Fig. 3.  Ball-and-stick representations of NH4Be2BO3F2(ABBF)[79,80].

    图 4  AZn2BO3X2 (A = K, Rb, NH4)系列晶体结构模型[6381] (a) NH4Zn2BO3Cl2; (b) KZn2BO3Cl2; (c) RbZn2BO3Cl2

    Fig. 4.  Ball-and-stick representations of AZn2BO3X2 (A = K, Rb, NH4) series[6381]: (a) NH4Zn2BO3Cl2; (b) KZn2BO3Cl2; (c) RbZn2BO3Cl2.

    图 5  KABO系列晶体结构模型[5052] (a) K2Al2B2O7; (b) $\beta$-Rb2Al2B2O7

    Fig. 5.  Ball-and-stick representations of KABO series[5052]: (a) K2Al2B2O7; (b) $\beta$-Rb2Al2B2O7.

    图 6  Ba3Mg3(BO3)3F3晶体结构模型[87] (a) Sr2Be2B2O7; (b) Ba3Mg3(BO3)3F3

    Fig. 6.  Ball-and-stick representations of Ba3Mg3(BO3)3F3[87]: (a) Sr2Be2B2O7; (b) Ba3Mg3(BO3)3F3.

    图 7  Sr2Be2B2O7和BaAl2B2O7晶体结构模型

    Fig. 7.  Ball-and-stick representations of Sr2Be2B2O7 and BaAl2B2O7.

    图 8  K3Sr3Li2Al4B6O20F和K3Ba3Li2Al4B6O20F (KBLABF)的晶体结构模型

    Fig. 8.  Ball-and-stick representations of K3Sr3Li2Al4B6O20F and K3Ba3Li2Al4B6O20F (KBLABF).

    图 9  氟化硼酸盐的活性基团平衡“倍频效应-透过范围-双折射率”的关系[68]

    Fig. 9.  Relationship of active group balance of fluorooxoborates among bandgap, NLO coefficient and birefringence[68].

    图 10  MB4O6F族氟化硼酸盐的晶体结构[92]

    Fig. 10.  Crystal structures of the MB4O6F family[92].

    图 11  层间由B—O共价键连接的系列硼酸盐晶体结构

    Fig. 11.  Crystal structures of the series borates contain B—O covalent bond.

    表 1  层间含有离子键和氢键连接的类KBBF结构硼酸盐深紫外NLO材料的结构和光学性能比较

    Table 1.  Cmparison of structural and optical properties of some deep-UV NLO materials of KBBF family with adjacent layers connected by ionic bond and hydrogen bond.

    化合物空间群结构层间连接紫外截止边/nmdeff (KDP)或dij/pm·V—1
    NaBe2BO3F2[20]C2[Be2BO3F2]Na+—F155deff = 1.7 × deff (NH4H2PO4)
    KBe2BO3F2[20]R32[Be2BO3F2]K+—F147d11 = 0.47 ± 0.01
    RbBe2BO3F2[21]R32[Be2BO3F2]Rb+—F160d11 = 0.45 ± 0.01
    CsBe2BO3F2[22]R32[Be2 BO3F2]Cs+—F151d11 = 0.5
    NH4Be2BO3F2[48]R32[Be2BO3F2]N—H·F1531.2
    $\gamma $-Be2BO3F[48]R32[Be2BO3F2]Be2+—F144.82.3
    RbZn2BO3Cl2[63,81]R32[Zn2BO3Cl2]Rb+—Cl1982.9
    KZn2BO3Cl2[63,81]R32[Zn2BO3Cl2]K+—Cl1933.0
    NH4Zn2BO3Cl2[63]R32[Zn2BO3Cl2]N—H·Cl1862.8
    Be2(BO3)F[43]C2[Be2BO3F2]Be2+—F150 a0.25
    BaBe2BO3F3[43]P63[Be2BO3F2]Ba2+—F< 1850.1
    K2Al2B2O7[50,52]P321[Al3B3O6]Al3+—O2−180 0.45
    K2(1-x)Na2xAl2BO7[88](0 < x < 0.6)P321[Al3B3O6]Al3+—O2−180 0.45
    K2(1−x)Rb2xAl2B2O7[82] (0 < x < 0.75)P321[Al3B3O6]Al3+—O2−0.7
    K0.67Rb1.33Al2B2O7[83]P321[Al3B3O6]Al3+—O2−1880.9
    $\beta$-Rb2Al2B2O7[51]P321[Al3B3O6]Al3+—O2−< 2002.0
    BaAlBO3F2[84]$ P{\overline 6}2c$[AlBO3F2]Ba2+—F1652.0
    Rb3Al3B3O10F[54]P31c[Al3(BO3)OF]Al3+—FAl3+—O2−< 2001.2
    BaZnBO3F[64]$ P{\overline 6}$[ZnBO3F]Zn2+—O2−3 × deff
    Ba3Mg3(BO3)3F3[87]Pna21[Mg3O2F3(BO3)2]Ba2+—F184d33 = 0.51
    注: 上标a为计算值.
    下载: 导出CSV

    表 2  SBBO型硼酸盐深紫外NLO材料的结构和光学性能比较

    Table 2.  Comparison of structural and optical properties of some deep-UV NLO materials of SBBO family.

    化合物空间群结构层间连接紫外截止边/nm倍频效应(KDP)或dij//pm·V−1
    Sr2Be2B2O7[39]$ P{\overline 6}c2$[Be2(BO3)2O]Sr2+—O2−1552.5
    Ba2Be2B2O7[40,73]$ P{\overline 6}2c$[Be2(BO3)2O]Ba2+—O2−2152.0
    BaAl2B2O7[52]R32[Al6B6O12]Al3+—O2−d11 = 0.75
    NaCaBe2B2O6F[41]Cc[Be3B3O6F3]Ca2+—O2−1900.3
    K3Ba3Li2Al4B6O20F[55]$ P{\overline 6}2c$[Li2Al4B6O20F]Ba2+—O2−1901.5
    Rb3Ba3Li2Al4B6O20F[89]$ P{\overline 6}2c$[Li2Al4B6O20F]Ba2+—O2−1951.4
    K3Sr3Li2Al4B6O20F[57]R32[Li2Al4B6O20F]Sr2+—O2−1901.7 (0.9)
    Cs2Al2(B3O6)2O[90]P63[Al2(B3O6)2O]Al3+—O2−185d31 = 0.032
    下载: 导出CSV

    表 3  部分氟化硼酸盐深紫外NLO材料的结构和光学性能比较

    Table 3.  Comparison of structural and optical properties of some fluorooxoborates deep-UV NLO materials.

    化合物空间群结构层间连接方式紫外截止边/nm倍频效应(KDP)
    NH4B4O6F[69]Pna21[B4O6F]N—H·F1563.0
    CsB4O6F[71]Pna21[B4O6F]Cs+—F1551.9
    RbB4O6F[70]Pna21[B4O6F]Rb+—F< 1900.8
    CsKB8O12F2[70]P321[B4O6F]Cs/K+—F< 1901.9
    CsRbB8O12F2[70]$ P{\overline 6}2c$[B4O6F]Cs/K+—F< 1901.1
    NaB4O6F[72]C2[B4O6F]Na+—F< 1800.9
    SrB5O7F3[98]Cmc21[B5O7F3]Sr2+—F< 1801.6
    Sr2B10O14F6[99]< 2002.5
    CaB5O7F3[97]Cmc21[B5O7F3]Ca2+—F< 1802.0
    Ca2B10O14F6[99]< 2002.3
    下载: 导出CSV

    表 4  层间含有B—O共价键连接的类KBBF结构硼酸盐深紫外NLO材料的结构和光学性能比较

    Table 4.  Comparison of structural and optical properties of some deep-UV NLO materials of KBBF family with adjacent layers connected by rigid B—O groups.

    化合物空间群结构层间连接方式紫外截止边/nm倍频效应(KDP)
    $ \beta $-KBe2B3O7[44]Pmn21[Be2BO5][BO2]< 2000.75
    $\gamma $-KBe2B3O7[44]P21[Be2BO5][B3O6]< 2000.68
    RbBe2B3O7[44]Pmn21[Be2BO5][BO2]< 2000.79
    Na2CsBe6B5O15[45]C2[Be2BO5][BO3]< 2001.17
    Na2Be4B4O11[46]P1[Be2BO5][B2O5]1711.30
    LiNa5Be12B12O23[46]Pc[Be2BO5][B2O5]1691.40
    Li4Sr(BO3)2[67]Cc[SrBO3][B2O3]1862.00
    下载: 导出CSV
    Baidu
  • [1]

    Maiman T H 1960 Nature 187 493Google Scholar

    [2]

    Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 7 118Google Scholar

    [3]

    Zernike F, Berman P R 1966 Phys. Rev. Lett. 16 117Google Scholar

    [4]

    Rao K S, Yoon K H 2003 J. Mater. Sci. 38 391Google Scholar

    [5]

    Cyranoski D 2009 Nature 457 953Google Scholar

    [6]

    Yao W J, He R, Wang X Y, Lin Z S, Chen C T 2014 Adv. Opt. Mater. 2 411Google Scholar

    [7]

    陈创天, 刘丽娟, 王晓洋 2014 物理 43 520Google Scholar

    Chen C T, Liu L J, Wang X Y 2014 Physics 43 520Google Scholar

    [8]

    Tressaud A, Poeppelmeier K R 2016 Photonic and Electronic Properties of Fluoride Materials: Progress in Fluorine Science Series (Amsterdam: Elsevier)

    [9]

    Tran T T, Yu H W, Rondinelli J M, Poeppelmeier K R, Halasyamani P S 2016 Chem. Mater. 28 5238Google Scholar

    [10]

    Halasyamani P S, Zhang W G 2017 Inorg. Chem. 56 12077Google Scholar

    [11]

    Wu C, Yang G, Humphrey M G, Zhang C 2018 Coord. Chem. Rev. 375 459Google Scholar

    [12]

    Shen Y G, Zhao S G, Luo J H 2018 Coord. Chem. Rev. 366 1Google Scholar

    [13]

    Yang Y, Jiang X X, Lin Z S, Wu Y C 2017 Crystals (Basel) 7 951

    [14]

    Eimerl D, Davis L, Velsko S, Graham E, Zalkin A 1987 J. Appl. Phys. 62 1968Google Scholar

    [15]

    Chen C T, Wu Y C, Jiang A D, Wu B C, You G M, Li R K, Lin S J 1989 J. Opt. Soc. Am. B 6 616Google Scholar

    [16]

    卢嘉锡, 吴新涛, 陈长章, 程文旦, 梁敬魁 1997 科学通报 42 561Google Scholar

    Lu J X, Wu X T, Chen C Z, Chen W D, Liang J K 1997 Chin. Sci. Bull. 42 561Google Scholar

    [17]

    Krogh-Moe J 1960 Acta Crystallogr. 13 889Google Scholar

    [18]

    Mori Y, Kuroda I, Nakajima S, Sasaki T, Nakai S 1995 Appl. Phys. Lett. 67 1818Google Scholar

    [19]

    陈创天, 姚文娇 2011 光学学报 31 82

    Chen C T, Yao W J 2011 Acta Opt. Sin. 31 82

    [20]

    Mei L F, Wang Y B, Chen C T, Wu B 1993 J. Appl. Phys. 74 7014Google Scholar

    [21]

    Chen C T, Luo S Y, Wang X Y, Wang G L, Wen X H, Wu H X, Zhang X, Xu Z Y 2009 J. Opt. Soc. Am. B 26 1519Google Scholar

    [22]

    Huang H W, Chen C T, Wang X Y, Zhu Y, Wang G L, Zhang X, Wang L R, Yao J Y 2011 J. Opt. Soc. Am. B: Opt. Phys. 28 2186Google Scholar

    [23]

    Jones-Bey H 1998 Laser Focus World 34 127

    [24]

    陈创天, 许祖彦 2002 人工晶体学报 31 224Google Scholar

    Chen C T, Xu Z Y 2002 J. Synth. Cryst. 31 224Google Scholar

    [25]

    刘丽娟, 陈创天 2010 中国材料进展 29 16

    Liu L J, Chen C T 2010 Mater. Chin. 29 16

    [26]

    Tran T T, Young J, Rondinelli J M, Halasyamani P S 2017 J. Am. Chem. Soc. 139 1285Google Scholar

    [27]

    Tran T T, He J G, Rondinelli J M, Halasyamani P S 2015 J. Am. Chem. Soc. 137 10504Google Scholar

    [28]

    Zhao S G, Gong P F, Luo S Y, Bai L, Lin Z S, Tang Y Y, Zhou Y L, Hong M C, Luo J H 2015 Angew. Chem. Int. Ed. 127 4291Google Scholar

    [29]

    Zhao S G, Gong P F, Luo S Y, Lei B, Lin Z S, Ji C M, Chen T L, Hong M C, Luo J H 2014 J. Am. Chem. Soc. 136 8560Google Scholar

    [30]

    Li L, Wang Y, Lei B H, Han S J, Yang Z H, Poeppelmeier K R, Pan S L 2016 J. Am. Chem. Soc. 138 9101Google Scholar

    [31]

    Shen Y G, Yang Y, Zhao S G, Zhao B Q, Lin Z S, Ji C M, Li L N, Fu P, Hong M C, Luo J H 2016 Chem. Mater. 28 7110Google Scholar

    [32]

    Zhou Z Y, Qiu Y, Liang F, Palatinus L, Poupon M, Yang T, Cong R H, Lin Z S, Sun J L 2018 Chem. Mater. 30 2203Google Scholar

    [33]

    Song J L, Hu C L, Xu X, Kong F, Mao J G 2015 Angew. Chem. Int. Ed. 46 3679

    [34]

    Wu H P, Pan S L, Poeppelmeier K R, Li H Y, Jia D Z, Chen Z H, Fan X Y, Yang Y, Rondinelli J M, Luo H S 2011 J. Am. Chem. Soc. 133 7786Google Scholar

    [35]

    Wang Z J, Qiao H M, Su R B, Hu B, Yang X, He C, Long X 2018 Adv. Funct. Mater. 28 1804089Google Scholar

    [36]

    Sun Y Z, Li Z, Lee M H, Yang Z H, Pan S L, Sadeh B 2017 J. Phys. Soc. Jpn. 86 044401Google Scholar

    [37]

    Zhang B B, Han G P, Wang Y, Chen X L, Yang Z H, Pan S L 2018 Chem. Mater. 30 5397Google Scholar

    [38]

    Xiong L, Chen J, Lu J, Pan C Y, Wu L M 2018 Chem. Mater. 30 7823Google Scholar

    [39]

    Chen C T, Wang Y B, Wu B C, Wu K, Zeng W, Yu L 1995 Nature 373 322Google Scholar

    [40]

    Qi H, Chen C T 2001 Inorg. Chem. Commun. 4 565Google Scholar

    [41]

    Huang H W, Yao J Y, Lin Z S, Wang X Y, He R, Yao W J, Zhai N X, Chen C T 2011 Chem. Mater. 23 5457Google Scholar

    [42]

    Huang H W, Yao J Y, Lin Z S, Wang X Y, He R, Yao W J, Zhai N X, Chen C T 2011 Angew. Chem. Int. Ed. 123 9307Google Scholar

    [43]

    Guo S, Liu L J, Xia M J, Kang L, Huang Q, Li C, Wang X Y, Lin Z S, Chen C T 2016 Inorg. Chem. 47 6586

    [44]

    Wang S C, Ye N, Li W, Zhao D 2010 J. Am. Chem. Soc. 132 8779Google Scholar

    [45]

    Wang S C, Ye N 2011 J. Am. Chem. Soc. 133 11458Google Scholar

    [46]

    Huang H, Liu L, Jin S, Yao W, Zhang Y, Chen C 2013 J. Am. Chem. Soc. 135 18319Google Scholar

    [47]

    Guo S, Liang F, Liu L J, Xia M J, Fang Z, Wu R F, Wang X Y, Lin Z S, Chen C T 2017 New J. Chem. 41 4269Google Scholar

    [48]

    Peng G, Ye N, Lin Z S, Kang L, Pan S L, Zhang M, Lin C, Long X, Luo M, Chen Y 2018 Angew. Chem. Int. Ed. 57 8968Google Scholar

    [49]

    Guo S, Jiang X X, Xia M J, Liu L, Fang Z, Huang Q, Wu R, Wang X, Lin Z S, Chen C T 2017 Inorg. Chem. 56 11451Google Scholar

    [50]

    Hu Z G, Higashiyama T, Yoshimura M, Yap Y K, Mori Y, Sasaki T 1998 Jpn. J. Appl. Phys. 3 7

    [51]

    Tran T T, Koocher N Z, Rondinelli J M, Halasyamani P S 2017 Angew. Chem. Int. Ed. 56 2969Google Scholar

    [52]

    Ye N, Zeng W R, Wu B C, Chen C T 1998 Proc. SPIE-Int. Soc. Opt. Eng. p21

    [53]

    Hu Z G, Yoshimura M, Muramatsu K, Mori Y, Sasaki T 2002 Jpn. J. Appl. Phys. 41 1131Google Scholar

    [54]

    Zhao S G, Gong P F, Luo S Y, Liu S J, Li L N, Asghar M A, Khan T, Hong M, Lin Z S, Luo J H 2015 J. Am. Chem. Soc. 46 2207

    [55]

    Zhao B Q, Bai L, Li B X, Zhao S G, Shen Y G, Li X F, Ding Q R, Ji C M, Lin Z S, Luo J H 2017 Cryst. Growth Des. 18 1168

    [56]

    Yu H W, Young J, Wu H P, Zhang W, Rondinelli J M, Halasyamani S 2017 Adv. Opt. Mater. 5 1700840Google Scholar

    [57]

    Wu H P, Yu H W, Pan S L, Halasyamani P S 2017 Inorg. Chem. 56 8755Google Scholar

    [58]

    Zou G, Lin C, Jo H, Nam G, You T S, Ok K M 2016 Angew. Chem. Int. Ed. 55 12078Google Scholar

    [59]

    Luo M, Song Y X, Liang F, Ye N, Lin Z S 2018 Inorg. Chem. Front. 5 916Google Scholar

    [60]

    Yu H W, Koocher N, Rondinelli J, Halasyamani P S 2018 Angew. Chem. Int. Ed. 57 6100Google Scholar

    [61]

    Zhao S G, Zhang J, Zhang S Q, Sun Z H, Lin Z S, Wu Y C, Hong M C, Luo J H 2014 Inorg. Chem. 53 2521Google Scholar

    [62]

    Yu H W, Wu H P, Pan S L, Yang Z H, Hou X L, Su X, Jing Q, Poeppelmeier K R, Rondinelli J M 2014 J. Am. Chem. Soc. 136 1264Google Scholar

    [63]

    Yang G S, Gong P F, Lin Z S, Ye N 2016 Chem. Mater. 28 9122Google Scholar

    [64]

    Xia M J, Li R K 2016 J. Solid State Chem. 233 58Google Scholar

    [65]

    Chen Y N, Zhang M, Pan S L 2018 New J. Chem. 42 12365Google Scholar

    [66]

    Duan M H, Xia M J, Li R K 2018 Eur. J. Inorg. Chem. 2018 3686Google Scholar

    [67]

    Zhao S G, Gong P F, Bai L, Xu X, Zhang S Q, Sun Z H, Lin Z S, Hong M C, Chen C T, Luo J H 2014 Nat. Commun. 5 4019Google Scholar

    [68]

    Zhang B B, Shi G Q, Yang Z H, Zhang F F, Pan S L 2017 Angew. Chem. Int. Ed. 56 3916Google Scholar

    [69]

    Shi G Q, Wang Y, Zhang F F, Zhang B B, Yang Z H, Hou X L, Pan S L, Poeppelmeier K R 2017 J. Am. Chem. Soc. 139 10645Google Scholar

    [70]

    Wang Y, Zhang B B, Yang Z H, Pan S L 2018 Angew. Chem. Int. Ed. 57 2150Google Scholar

    [71]

    Wang X F, Wang Y, Zhang B B, Zhang F F, Yang Z H, Pan S L 2017 Angew. Chem. Int. Ed. 56 14119Google Scholar

    [72]

    Zhang Z Z, Wang Y, Zhang B B, Yang Z H, Pan S L 2018 Angew. Chem. Int. Ed. 57 6577Google Scholar

    [73]

    Qi H, Chen C T 2001 Chem. Lett. 30 352Google Scholar

    [74]

    沈耀国 2017 民营科技 6 56Google Scholar

    Shen Y G 2017 Pri.Tech. 6 56Google Scholar

    [75]

    陈创天 1976 25 146Google Scholar

    Chen C T 1976 Acta Phys. Sin. 25 146Google Scholar

    [76]

    陈创天 1977 26 486Google Scholar

    Chen C T 1977 Acta Phys. Sin. 26 486Google Scholar

    [77]

    陈创天 1977 26 124Google Scholar

    Chen C T 1977 Acta Phys. Sin. 26 124Google Scholar

    [78]

    陈创天 1978 27 41Google Scholar

    Chen C T 1978 Acta Phys. Sin. 27 41Google Scholar

    [79]

    Kang L, Luo S Y, Peng G, Ye N, Wu Y C, Chen C T, Lin Z S 2015 Inorg. Chem. 54 10533Google Scholar

    [80]

    Bian Q, Yang Z H, Wang Y C, Mutailipu M, Ma Y, Pan S 2018 Inorg. Chem. 57 5716Google Scholar

    [81]

    Huang Q, Liu L J, Wang X Y, Li R K, Chen C T 2016 Inorg. Chem. Commun. 55 12496Google Scholar

    [82]

    Atuchin V V, Bazarov B G, Gavrilova T A, Grossman V G, Molokeev M S, Bazarova Z G 2012 J. Alloys Compd. 515 119Google Scholar

    [83]

    Huang Q, Liu L J, Xia M J, Yang Y, Guo S, Wang X Y, Lin Z S, Chen C T 2017 Crystals 7 104Google Scholar

    [84]

    Hu Z G, Yoshimura M, Muramatsu K, Mori Y, Sasaki T 2002 Jpn. J. Appl. Phys., Part 2 41

    [85]

    Hu Z G, Yue Y C, Chen X A, Yao J Y, Wang J N, Lin Z S 2011 Solid State Sci. 13 875Google Scholar

    [86]

    Li R K, Chen P 2010 Inorg. Chem. 49 1561Google Scholar

    [87]

    Mutailipu M, Zhang M, Wu H P, Yang Z H, Shen Y H, Sun J L, Pan S L 2018 Nat. Commun. 9 3089Google Scholar

    [88]

    He M, Chen X L, Okudera H, Simon A 2005 Chem. Mater. 17 2193Google Scholar

    [89]

    Shen Y G, Zhao S G, Yang Y, Cao L L, Wang Z J, Zhao B Q, Sun Z H, Lin Z S, Luo J H 2017 Cryst. Growth Des. 17 4422Google Scholar

    [90]

    Fang Z, Jiang X X, Duan M H, Hou Z Y, Tang C C, Xia M J, Liu L J, Lin Z S, Fan F D, Bai L, Chen C T 2018 Chem. - Eur. J. 24 7856Google Scholar

    [91]

    盖敏强, 王颖, 潘世烈 2018 科学通报 63 998

    Gai M Q, Wang Y, Pan S L 2018 Chin. Sci. Bull. 63 998

    [92]

    Han G P, Wang Y, Zhang B B, Pan S L 2018 Chem.- Eur. J. 24 17638Google Scholar

    [93]

    Wang Y, Pan S L 2016 Coord. Chem. Rev. 323 15Google Scholar

    [94]

    Cakmak G, Nuss J, Jansen M 2009 Z. Anorg. Allg. Chem. 635 631Google Scholar

    [95]

    Pilz T, Jansen M 2011 Z. Anorg. Allg. Chem. 637 2148Google Scholar

    [96]

    Pilz T, Nuss H, Jansen M 2012 J. Solid State Chem. 186 104Google Scholar

    [97]

    Zhang Z Z, Wang Y, Zhang B B, Yang Z H, Pan S L 2018 Inorg. Chem. 57 4820Google Scholar

    [98]

    Mutailipu M, Zhang M, Zhang B B, Wang L Y, Yang Z H, Zhou X, Pan S L 2018 Angew. Chem. Int. Ed. 57 6095Google Scholar

    [99]

    Luo M, Liang F, Song Y X, Zhao D, Xu F, Ye N, Lin Z S 2018 J. Am. Chem. Soc. 140 3884Google Scholar

    [100]

    Mutailipu M, Zhang M, Zhang B B, Yang Z H, Pan S L 2018 Chem. Commun. 54 6308Google Scholar

    [101]

    Tang C C, Jiang X X, Yin W L, Liu L J, Xia M J, Huang Q, Song G M, Wang X Y, Lin Z S, Chen C T 2019 Dalton Trans. 48 21Google Scholar

    [102]

    史国强 2017 硕士学位论文 (北京: 中国科学院大学)

    Shi G Q 2017 M.S. Thesis(Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [103]

    Luo M, Liang F, Song Y X, Zhao D, Ye N, Lin Z S 2018 J. Am. Chem. Soc. 140 6814Google Scholar

    [104]

    Kang L, Lin Z S, Liu F, Huang B 2018 Inorg. Chem. 57 11146Google Scholar

    [105]

    Kang L, Liang F, Gong P F, Lin Z S, Liu F, Huang B 2018 Phys. Status Solidi RRL 12 1800276Google Scholar

  • [1] 阮远东, 章志昊, 贾茳勰, 顾煜宁, 张善端, 崔旭高, 洪葳, 白彦峥, 田朋飞. 空间引力波探测中电荷管理系统的紫外光源应用.  , 2024, 73(22): 220401. doi: 10.7498/aps.73.20241115
    [2] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋. WO3/β-Ga2O3异质结深紫外光电探测器的高温性能.  , 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [3] 石凉竹, 张萌, 储玉喜, 刘博文, 胡明列. 光纤飞秒激光五倍频产生206 nm深紫外激光.  , 2023, 72(22): 224209. doi: 10.7498/aps.72.20230877
    [4] 吴芳, 步扬, 刘志帆, 王少卿, 李思坤, 王向朝. 深紫外双层金属光栅偏振器的设计与分析.  , 2021, 70(4): 044203. doi: 10.7498/aps.70.20201403
    [5] 陈华俊. 基于石墨烯光力系统的非线性光学效应及非线性光学质量传感.  , 2020, 69(13): 134203. doi: 10.7498/aps.69.20191745
    [6] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华. 超宽禁带半导体β-Ga2O3及深紫外透明电极、日盲探测器的研究进展.  , 2019, 68(7): 078501. doi: 10.7498/aps.68.20181845
    [7] 贾宁, 王善朋, 陶绪堂. 中远红外非线性光学晶体研究进展.  , 2018, 67(24): 244203. doi: 10.7498/aps.67.20181591
    [8] 孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄. Ba1-xB2-y-zO4SixAlyGaz晶体和频可调谐深紫外飞秒激光器.  , 2015, 64(16): 164205. doi: 10.7498/aps.64.164205
    [9] 马晶, 刘迎. KBe2BO3F2飞秒光参量放大中的群速匹配.  , 2009, 58(7): 4697-4701. doi: 10.7498/aps.58.4697
    [10] 薛春荣, 易葵, 齐红基, 邵建达, 范正修. 氟化物材料在深紫外波段的光学常数.  , 2009, 58(7): 5035-5040. doi: 10.7498/aps.58.5035
    [11] 王正平, 滕 冰, 杜晨林, 许心光, 傅 琨, 许贵宝, 王继扬, 邵宗书. 低对称性非线性光学晶体BIBO的倍频性质.  , 2003, 52(9): 2176-2184. doi: 10.7498/aps.52.2176
    [12] 王正平, 邵耀鹏, 许心光, 王继扬, 刘耀岗, 魏景谦, 邵宗书. Nd:Ca4ReO(BO3)3(Re=Gd,Y)晶体最佳激光、最佳倍频及最佳自倍频方向的确定.  , 2002, 51(9): 2029-2033. doi: 10.7498/aps.51.2029
    [13] 林哲帅, 王志中, 陈创天, 李明宪. NaNO2晶体线性和非线性光学系数的计算.  , 2001, 50(6): 1145-1149. doi: 10.7498/aps.50.1145
    [14] 余保龙, 卜宏建, 吴晓春, 张桂兰, 汤国庆, 陈文驹, 朱从善, 干福熹. In2O3纳米微粒非线性光学特性.  , 1999, 48(2): 320-325. doi: 10.7498/aps.48.320
    [15] 尹鑫, 吕孟凯, 程端平. KIO3晶体的折射率和非线性光学性能.  , 1987, 36(11): 1492-1495. doi: 10.7498/aps.36.1492
    [16] 薛英华, 闵乃本, 朱劲松, 冯端. 聚片多畴LiNbO3晶体的倍频效应.  , 1983, 32(12): 1515-1525. doi: 10.7498/aps.32.1515
    [17] 陈创天. 晶体电光和非线性光学效应的离子基团理论(Ⅳ)——钙钛矿、钨青铜型、LiNbO3型晶体线性极化率计算.  , 1978, 27(1): 41-46. doi: 10.7498/aps.27.41
    [18] 陈创天. 晶体电光和非线性光学效应的离子基团理论(Ⅲ)——利用畸变氧八面体的离子基团模型计算LiNbO3,LiTaO3,KNbO3,BNN晶体的电光和倍频系数.  , 1977, 26(6): 486-499. doi: 10.7498/aps.26.486
    [19] 陈创天. 晶体电光和非线性光学效应的离子基团理论(Ⅱ)——利用(IO3)-1离子基团的分子轨道计算α-LiIO3晶体的倍频系数.  , 1977, 26(2): 124-132. doi: 10.7498/aps.26.124
    [20] 陈创天. 晶体电光和非线性光学效应的离子基团理论(Ⅰ)——利用氧八面体畸变模型计算BaTiO3晶体电光及倍频系数.  , 1976, 25(2): 146-161. doi: 10.7498/aps.25.146
计量
  • 文章访问数:  14568
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-06
  • 修回日期:  2018-12-25
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回
Baidu
map