搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

整形飞秒激光脉冲的成丝超连续辐射控制

常峻巍 朱瑞晗 张兰芝 奚婷婷 郝作强

引用本文:
Citation:

整形飞秒激光脉冲的成丝超连续辐射控制

常峻巍, 朱瑞晗, 张兰芝, 奚婷婷, 郝作强

Control of supercontinuum generation from filamentation of shaped femtosecond laser pulses

Chang Jun-Wei, Zhu Rui-Han, Zhang Lan-Zhi, Xi Ting-Ting, Hao Zuo-Qiang
PDF
HTML
导出引用
  • 飞秒激光成丝超连续辐射具有高强度和高时空相干性等优点, 作为一种超宽带光源在很多领域都具有广泛的应用前景. 本文提出一种结合微透镜阵列的空间调制和基于液晶空间光调制器的时域整形的飞秒激光脉冲整形方式, 利用基于遗传算法的反馈优化控制, 实现了飞秒激光在熔融石英中成丝产生的超连续辐射强度的调制, 得到了在一定范围内光谱强度可控的超连续辐射光谱; 光谱的能量密度可以从0.03 μJ/nm调制到0.09 μJ/nm, 其能量密度变化达到了初始值的3倍. 计算了典型迭代代数对应的整形脉冲时域包络, 分析了超连续光谱随迭代代数的演化趋势, 结果表明, 脉冲包络的峰值强度和波形分布是影响超连续光谱展宽和强度的主要物理原因.
    Supercontinuum (SC), as one of the most spectacular phenomena occurring in the nonlinear process of intense femtosecond laser-material interaction, has attracted considerable interest. The broadband SC sources have a variety of applications including the spectroscopy, fluorescence microscopy, remote sensing, and generation of few-cycle pulses. Over the last few decades, the SC has been extensively investigated in various optical media, including liquid, gas, and solid. Especially, ultrabroadband SC sources have achieved remarkable development in the photonic crystal and micro-structured fibers. Even so, the generation of the SC with high brightness, high spatiotemporal coherence and good maneuverability, is still a challenging topic. The SC generation from femtosecond filamentation is a unique white light source with high pulse energy, high brightness and high spatiotemporal coherence, whose spectral range spans from ultraviolet to mid-infrared. In recent years, numerous studies have been conducted to optimize the filamentation and SC. The control of filamentation such as the filament length, number and position, as well as the generation of the ultra-broadband spectrum with high spectral energy density has been realized. To date, the optimal control of SC has been realized by the spatial modulation or time-domain shaping of the femtosecond laser pulse. However, there is no report on the control of SC generation and filamentation by spatiotemporally modulating the femtosecond laser pulses as far as we know. In this work, a spatiotemporal modulation for the femtosecond laser pulse is proposed, which combines the spatial modulation by using microlens array (MLA) and the laser pulse shaping based on liquid crystal spatial light modulator. We investigate the control of the SC generation from the filamentation of the spatiotemporally modulated femtosecond laser pulses in fused silica by using the feedback optimal control based on genetic algorithm. In our experiments, with the increase of the iterative generation, the cut-off wavelength in the blue-side extension of the SC becomes shorter gradually, and the spectral intensity of the SC increases significantly. After the eighth iteration, the increase of the spectral intensity slows. With the number of iterations increasing further, the intensity and broadening of SC spectrum will no longer apparently change. Hence, the feedback optimization control of spectral intensity of SC is realized, and the SC with controllable spectral intensity in a certain range is obtained. The maximum intensity variation of SC is more than three times. By integrating the spectral intensities of SC for different iterative generations, we characterize the increase trend of SC conversion efficiency. During the first few iterations, the conversion efficiency increases rapidly. Then it increases slowly after eighth generations and reaches its maximum after several generations (10th generation). The conversion efficiency has a similar evolution to the spectral intensity of the SC. To explain the physical mechanism, the initial envelope of the shaping pulse with typical iteration generation is calculated. It can be concluded that the spatial modulation of MLA allows for higher incident laser energy and for more filaments’ generation, which increases the energy of SC radiation directly. The peak intensity and envelope distribution of time domain pulse are the main factors affecting the spectral intensity and broadening the SC.
      通信作者: 奚婷婷, ttxi@ucas.ac.cn ; 郝作强, zqhao@sdnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774038, 11874056, 11474039, 11274053)和山东省泰山学者建设工程资助的课题
      Corresponding author: Xi Ting-Ting, ttxi@ucas.ac.cn ; Hao Zuo-Qiang, zqhao@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774038, 11874056, 11474039, 11274053) and the Taishan Scholar Project of Shandong Province, China
    [1]

    Chin S L, Hosseini S A, Liu W, Luo Q, Théberge F, Aközbek N, Becker A, Kandidov V P, Kosareva O G, Schroeder H 2005 Can. J. Phys. 83 863Google Scholar

    [2]

    Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 584Google Scholar

    [3]

    Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 592Google Scholar

    [4]

    Petersen C R, Prtljaga N, Farries M, Ward J, Napier B, Lloyd G R, Nallala J, Stone N, Bang O 2018 Opt. Lett. 43 999Google Scholar

    [5]

    Dupont S, Petersen C, Thøgersen J, Agger C, Bang O, Keiding S R 2012 Opt. Express 20 4887Google Scholar

    [6]

    Poudel C, Kaminski C F 2019 J. Opt. Soc. Am. B 36 A139Google Scholar

    [7]

    Riedle E, Bradler M, Wenninger M, Sailer C F, Pugliesi I 2013 Faraday Discuss. 163 139Google Scholar

    [8]

    Petersen C R, Moselund P M, Huot L, Hooper L, Bang O 2018 Infrared Phys. Technol. 91 182Google Scholar

    [9]

    Kasparian J, Rodriguez M, Méjean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, Mysyrowicz A, Sauerbrey R 2003 Science 301 61Google Scholar

    [10]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135Google Scholar

    [11]

    Price J H V, Feng X, Heidt A M, Brambilla G, Horak P, Poletti F, Ponzo G, Petropoulos P, Petrovich M, Shi J, Ibsen M, Loh W H, Rutt H N, Richardson D J 2012 Opt. Fiber Technol. 18 327Google Scholar

    [12]

    Labruyère A, Tonello A, Couderc V, Huss G, Leproux P 2012 Opt. Fiber Technol. 18 375Google Scholar

    [13]

    Lefort C, O’Connor R P, Blanquet V, Magnol L, Kano H, Tombelaine V, Lévêque P, Couderc V, Leproux P 2016 J. Biophotonics 9 709Google Scholar

    [14]

    Budriunas R, Stanislauskas T, Adamonis J, Aleknavi Cius A, Veitas G, Gadonas D, Balickas S, Michailovas A, Varanavicius A 2017 Opt. Express 25 5797Google Scholar

    [15]

    Hakala T, Suomalainen J, Kaasalainen S, Chen Y 2012 Opt. Express 20 7119Google Scholar

    [16]

    Chin S, Petit S, Borne F, Miyazaki K 1999 Jpn. J. Appl. Phys. 38 L126Google Scholar

    [17]

    Alfano R R 2006 The Supercontinuum Laser Source: Fundamentals with Updated References (New York: Springer) pp473–480

    [18]

    Garejev N, Tamošauskas G, Dubietis A 2017 J. Opt. Soc. Am. B 34 88Google Scholar

    [19]

    Dubietis A, Tamošauskas G, Šuminas R, Jukna V, Couairon A 2017 Lith. J. Phys. 57 113

    [20]

    Lu C H, Tsou Y J, Chen H Y, Chen B H, Cheng Y C, Yang S D, Chen M C, Hsu C C, Kung A H 2014 Optica 1 400Google Scholar

    [21]

    He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X, Wei Z Y 2017 Opt. Lett. 42 474Google Scholar

    [22]

    Camino A, Hao Z Q, Liu X, Lin J Q 2014 Opt. Lett. 39 747Google Scholar

    [23]

    Li D W, Xi T T, Zhang L Z, Tao H Y, Gao X, Lin J Q, Hao Z Q 2017 Opt. Express 25 23910Google Scholar

    [24]

    Li D W, Zhang L Z, Xi T T, Hao Z Q 2019 J. Opt. 21 065501Google Scholar

    [25]

    Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169Google Scholar

    [26]

    Weiner A M 2011 Opt. Commun. 284 3669Google Scholar

    [27]

    Mendoza-Yero O, Carbonell-Leal M, Doñate-Buendía C, Mínguez-Vega G, Lancis J 2016 Opt. Express 24 15307

    [28]

    Hong Z F, Zhang Q B, Ali Rezvani S, Lan P F, Lu P X 2016 Opt. Express 24 4029Google Scholar

    [29]

    Li P P, Cai M Q, Lü J Q, Wang D, Liu G G, Qian S X, Li Y, Tu C, Wang H T 2016 AIP Advances 6 125103Google Scholar

    [30]

    Heck G, Sloss J, Levis R J 2006 Opt. Commun. 259 216Google Scholar

    [31]

    Chen A M, Li S Y, Qi H X, Jiang Y F, Hu Z, Huang X R, Jin M X 2017 Opt. Commun. 383 144Google Scholar

    [32]

    常峻巍, 许梦宁, 王頔, 朱瑞晗, 奚婷婷, 张兰芝, 李东伟, 郝作强 2019 光学学报 39 0126021Google Scholar

    Chang J W, Xu M N, Wang D, Zhu R H, Xi T T, Zhang L D, Li D W, Hao Z Q 2019 Acta Opt. Sin. 39 0126021Google Scholar

    [33]

    Zhdanova A A, Shen Y J, Thompson J V, Scully M O, Yakovlev V V, Sokolov A V 2018 J. Mod. Opt. 65 1332Google Scholar

    [34]

    Ackermann R, Salmon E, Lascoux N, Kasparian J, Rohwetter P, Stelmaszczyk K, Li S, Lindinger A, Wöste L, Béjot P 2006 Appl. Phys. Lett. 89 171117Google Scholar

    [35]

    Thompson J V, Zhokhov P A, Springer M M, Traverso A J, Yakovlev V V, Zheltikov A M, Sokolov A V, Scully M O 2017 Sci. Rep. 7 43367Google Scholar

    [36]

    Zhan L D, Xu M N, Xi T T, Hao Z Q 2018 Phys. Plasmas 25 103102Google Scholar

    [37]

    Xu M N, Zhan L D, Xi T T, Hao Z Q 2019 J. Opt. Soc. Am. B 36 G6Google Scholar

  • 图 1  实验装置示意图(M, 800 nm高反镜; G, 光栅; CL, 柱面镜; LC-SLM, 液晶空间光调制器; MLA, 微透镜阵列; L, 平凸透镜; FS, 熔融石英; DM, 二向色镜; IS, 积分球)

    Fig. 1.  Schematic diagram of experimental setup. M, 800 nm HR mirror; G, grating; CL, cylindrical lens; LC-SLM, liquid crystal spatial light modulator; MLA, microlens array; L, plano-convex lens; FS, fused silica; DM, dichroic mirror; IS, integrating sphere.

    图 2  (a)时空调制飞秒脉冲成丝的超连续辐射随迭代代数的演化; (b)典型迭代代数对应的超连续辐射光谱

    Fig. 2.  (a) Evolution trend of supercontinuum generation by the spatiotemporal modulation femtosecond pulse filamentation with the increasing of iterative generation; (b) supercontinuum spectra of several typical iterative generations.

    图 3  超连续辐射光谱积分(400−700 nm波段)随迭代代数的变化

    Fig. 3.  Spectral intensity integration (400−700 nm) of the supercontinuum as a function of the iterative generation.

    图 4  典型迭代代数对应整形激光脉冲初始包络, 图中迭代代数依次为(a) 1, (b) 3, (c) 8和(d) 17

    Fig. 4.  Initial envelopes of shaped laser pulse with typical iteration generations of (a) 1, (b) 3, (c) 8 and (d) 17, respectively.

    Baidu
  • [1]

    Chin S L, Hosseini S A, Liu W, Luo Q, Théberge F, Aközbek N, Becker A, Kandidov V P, Kosareva O G, Schroeder H 2005 Can. J. Phys. 83 863Google Scholar

    [2]

    Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 584Google Scholar

    [3]

    Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 592Google Scholar

    [4]

    Petersen C R, Prtljaga N, Farries M, Ward J, Napier B, Lloyd G R, Nallala J, Stone N, Bang O 2018 Opt. Lett. 43 999Google Scholar

    [5]

    Dupont S, Petersen C, Thøgersen J, Agger C, Bang O, Keiding S R 2012 Opt. Express 20 4887Google Scholar

    [6]

    Poudel C, Kaminski C F 2019 J. Opt. Soc. Am. B 36 A139Google Scholar

    [7]

    Riedle E, Bradler M, Wenninger M, Sailer C F, Pugliesi I 2013 Faraday Discuss. 163 139Google Scholar

    [8]

    Petersen C R, Moselund P M, Huot L, Hooper L, Bang O 2018 Infrared Phys. Technol. 91 182Google Scholar

    [9]

    Kasparian J, Rodriguez M, Méjean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, Mysyrowicz A, Sauerbrey R 2003 Science 301 61Google Scholar

    [10]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135Google Scholar

    [11]

    Price J H V, Feng X, Heidt A M, Brambilla G, Horak P, Poletti F, Ponzo G, Petropoulos P, Petrovich M, Shi J, Ibsen M, Loh W H, Rutt H N, Richardson D J 2012 Opt. Fiber Technol. 18 327Google Scholar

    [12]

    Labruyère A, Tonello A, Couderc V, Huss G, Leproux P 2012 Opt. Fiber Technol. 18 375Google Scholar

    [13]

    Lefort C, O’Connor R P, Blanquet V, Magnol L, Kano H, Tombelaine V, Lévêque P, Couderc V, Leproux P 2016 J. Biophotonics 9 709Google Scholar

    [14]

    Budriunas R, Stanislauskas T, Adamonis J, Aleknavi Cius A, Veitas G, Gadonas D, Balickas S, Michailovas A, Varanavicius A 2017 Opt. Express 25 5797Google Scholar

    [15]

    Hakala T, Suomalainen J, Kaasalainen S, Chen Y 2012 Opt. Express 20 7119Google Scholar

    [16]

    Chin S, Petit S, Borne F, Miyazaki K 1999 Jpn. J. Appl. Phys. 38 L126Google Scholar

    [17]

    Alfano R R 2006 The Supercontinuum Laser Source: Fundamentals with Updated References (New York: Springer) pp473–480

    [18]

    Garejev N, Tamošauskas G, Dubietis A 2017 J. Opt. Soc. Am. B 34 88Google Scholar

    [19]

    Dubietis A, Tamošauskas G, Šuminas R, Jukna V, Couairon A 2017 Lith. J. Phys. 57 113

    [20]

    Lu C H, Tsou Y J, Chen H Y, Chen B H, Cheng Y C, Yang S D, Chen M C, Hsu C C, Kung A H 2014 Optica 1 400Google Scholar

    [21]

    He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X, Wei Z Y 2017 Opt. Lett. 42 474Google Scholar

    [22]

    Camino A, Hao Z Q, Liu X, Lin J Q 2014 Opt. Lett. 39 747Google Scholar

    [23]

    Li D W, Xi T T, Zhang L Z, Tao H Y, Gao X, Lin J Q, Hao Z Q 2017 Opt. Express 25 23910Google Scholar

    [24]

    Li D W, Zhang L Z, Xi T T, Hao Z Q 2019 J. Opt. 21 065501Google Scholar

    [25]

    Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169Google Scholar

    [26]

    Weiner A M 2011 Opt. Commun. 284 3669Google Scholar

    [27]

    Mendoza-Yero O, Carbonell-Leal M, Doñate-Buendía C, Mínguez-Vega G, Lancis J 2016 Opt. Express 24 15307

    [28]

    Hong Z F, Zhang Q B, Ali Rezvani S, Lan P F, Lu P X 2016 Opt. Express 24 4029Google Scholar

    [29]

    Li P P, Cai M Q, Lü J Q, Wang D, Liu G G, Qian S X, Li Y, Tu C, Wang H T 2016 AIP Advances 6 125103Google Scholar

    [30]

    Heck G, Sloss J, Levis R J 2006 Opt. Commun. 259 216Google Scholar

    [31]

    Chen A M, Li S Y, Qi H X, Jiang Y F, Hu Z, Huang X R, Jin M X 2017 Opt. Commun. 383 144Google Scholar

    [32]

    常峻巍, 许梦宁, 王頔, 朱瑞晗, 奚婷婷, 张兰芝, 李东伟, 郝作强 2019 光学学报 39 0126021Google Scholar

    Chang J W, Xu M N, Wang D, Zhu R H, Xi T T, Zhang L D, Li D W, Hao Z Q 2019 Acta Opt. Sin. 39 0126021Google Scholar

    [33]

    Zhdanova A A, Shen Y J, Thompson J V, Scully M O, Yakovlev V V, Sokolov A V 2018 J. Mod. Opt. 65 1332Google Scholar

    [34]

    Ackermann R, Salmon E, Lascoux N, Kasparian J, Rohwetter P, Stelmaszczyk K, Li S, Lindinger A, Wöste L, Béjot P 2006 Appl. Phys. Lett. 89 171117Google Scholar

    [35]

    Thompson J V, Zhokhov P A, Springer M M, Traverso A J, Yakovlev V V, Zheltikov A M, Sokolov A V, Scully M O 2017 Sci. Rep. 7 43367Google Scholar

    [36]

    Zhan L D, Xu M N, Xi T T, Hao Z Q 2018 Phys. Plasmas 25 103102Google Scholar

    [37]

    Xu M N, Zhan L D, Xi T T, Hao Z Q 2019 J. Opt. Soc. Am. B 36 G6Google Scholar

  • [1] 曹琦琦, 刘悦, 王硕. ITER装置中等离子体旋转和反馈控制对电阻壁模影响的数值研究.  , 2021, 70(4): 045201. doi: 10.7498/aps.70.20201391
    [2] 张云, 林爽, 张云峰, 张鹤, 常明莹, 于淼, 王雅秋, 蔡晓明, 姜远飞, 陈安民, 李苏宇, 金明星. 飞秒激光在空气中成丝诱导氮荧光发射的空间分布.  , 2021, 70(13): 134206. doi: 10.7498/aps.70.20201704
    [3] 付丽丽, 常峻巍, 陈佳琪, 张兰芝, 郝作强. 平顶飞秒激光经圆锥透镜在熔融石英中成丝及超连续辐射.  , 2020, 69(4): 044202. doi: 10.7498/aps.69.20191350
    [4] 范黎明, 吕明涛, 黄仁忠, 高天附, 郑志刚. 反馈控制棘轮的定向输运效率研究.  , 2017, 66(1): 010501. doi: 10.7498/aps.66.010501
    [5] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度.  , 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [6] 秦天奇, 王飞, 杨博, 罗懋康. 带反馈的分数阶耦合布朗马达的定向输运.  , 2015, 64(12): 120501. doi: 10.7498/aps.64.120501
    [7] 高勋, 杜闯, 李丞, 刘潞, 宋超, 郝作强, 林景全. 基于飞秒激光等离子体丝诱导击穿光谱探测土壤重金属Cr元素含量.  , 2014, 63(9): 095203. doi: 10.7498/aps.63.095203
    [8] 刘仙, 马百旺, 刘会军. 神经群模型中癫痫状棘波的闭环控制性能研究.  , 2013, 62(2): 020202. doi: 10.7498/aps.62.020202
    [9] 曾喆昭. 不确定混沌系统的径向基函数神经网络反馈补偿控制.  , 2013, 62(3): 030504. doi: 10.7498/aps.62.030504
    [10] 黄丽莲, 辛方, 王霖郁. 新分数阶超混沌系统的研究与控制及其电路实现.  , 2011, 60(1): 010505. doi: 10.7498/aps.60.010505
    [11] 史正平. 简易混沌振荡器的混沌特性及其反馈控制电路的设计.  , 2010, 59(9): 5940-5948. doi: 10.7498/aps.59.5940
    [12] 萧寒, 唐驾时, 梁翠香. 单频外激励弹簧摆的鞍结分岔控制.  , 2009, 58(5): 2989-2995. doi: 10.7498/aps.58.2989
    [13] 林 敏, 黄咏梅, 方利民. 双稳系统随机共振的反馈控制.  , 2008, 57(4): 2041-2047. doi: 10.7498/aps.57.2041
    [14] 尹小舟, 刘 勇. 非连续反馈控制激发介质中的螺旋波.  , 2008, 57(11): 6844-6851. doi: 10.7498/aps.57.6844
    [15] 唐驾时, 萧 寒. 耦合的van der Pol振子的极限环幅值控制.  , 2007, 56(1): 101-105. doi: 10.7498/aps.56.101
    [16] 都 琳, 徐 伟, 贾飞蕾, 李 爽. 基于低通滤波函数实现陀螺系统的反馈控制.  , 2007, 56(7): 3813-3819. doi: 10.7498/aps.56.3813
    [17] 陈 漩, 高自友, 赵小梅, 贾 斌. 反馈控制双车道跟驰模型研究.  , 2007, 56(4): 2024-2029. doi: 10.7498/aps.56.2024
    [18] 刘素华, 唐驾时. Langford系统Hopf分叉的线性反馈控制.  , 2007, 56(6): 3145-3151. doi: 10.7498/aps.56.3145
    [19] 李 昆, 徐妙华, 金 展, 刘运全, 王兆华, 令维军, 张 杰. 对超短脉冲强激光在大气通道中产生的三次谐波偏振特性及白光光谱调制特性的研究.  , 2007, 56(3): 1439-1442. doi: 10.7498/aps.56.1439
    [20] 岳丽娟, 陈艳艳, 彭建华. 用系统变量比例脉冲方法控制超混沌的电路实验研究.  , 2001, 50(11): 2097-2102. doi: 10.7498/aps.50.2097
计量
  • 文章访问数:  9078
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-20
  • 修回日期:  2019-10-24
  • 刊出日期:  2020-02-05

/

返回文章
返回
Baidu
map