-
Supercontinuum (SC), as one of the most spectacular phenomena occurring in the nonlinear process of intense femtosecond laser-material interaction, has attracted considerable interest. The broadband SC sources have a variety of applications including the spectroscopy, fluorescence microscopy, remote sensing, and generation of few-cycle pulses. Over the last few decades, the SC has been extensively investigated in various optical media, including liquid, gas, and solid. Especially, ultrabroadband SC sources have achieved remarkable development in the photonic crystal and micro-structured fibers. Even so, the generation of the SC with high brightness, high spatiotemporal coherence and good maneuverability, is still a challenging topic. The SC generation from femtosecond filamentation is a unique white light source with high pulse energy, high brightness and high spatiotemporal coherence, whose spectral range spans from ultraviolet to mid-infrared. In recent years, numerous studies have been conducted to optimize the filamentation and SC. The control of filamentation such as the filament length, number and position, as well as the generation of the ultra-broadband spectrum with high spectral energy density has been realized. To date, the optimal control of SC has been realized by the spatial modulation or time-domain shaping of the femtosecond laser pulse. However, there is no report on the control of SC generation and filamentation by spatiotemporally modulating the femtosecond laser pulses as far as we know. In this work, a spatiotemporal modulation for the femtosecond laser pulse is proposed, which combines the spatial modulation by using microlens array (MLA) and the laser pulse shaping based on liquid crystal spatial light modulator. We investigate the control of the SC generation from the filamentation of the spatiotemporally modulated femtosecond laser pulses in fused silica by using the feedback optimal control based on genetic algorithm. In our experiments, with the increase of the iterative generation, the cut-off wavelength in the blue-side extension of the SC becomes shorter gradually, and the spectral intensity of the SC increases significantly. After the eighth iteration, the increase of the spectral intensity slows. With the number of iterations increasing further, the intensity and broadening of SC spectrum will no longer apparently change. Hence, the feedback optimization control of spectral intensity of SC is realized, and the SC with controllable spectral intensity in a certain range is obtained. The maximum intensity variation of SC is more than three times. By integrating the spectral intensities of SC for different iterative generations, we characterize the increase trend of SC conversion efficiency. During the first few iterations, the conversion efficiency increases rapidly. Then it increases slowly after eighth generations and reaches its maximum after several generations (10th generation). The conversion efficiency has a similar evolution to the spectral intensity of the SC. To explain the physical mechanism, the initial envelope of the shaping pulse with typical iteration generation is calculated. It can be concluded that the spatial modulation of MLA allows for higher incident laser energy and for more filaments’ generation, which increases the energy of SC radiation directly. The peak intensity and envelope distribution of time domain pulse are the main factors affecting the spectral intensity and broadening the SC.
-
Keywords:
- femtosecond filamentation /
- supercontinuum /
- laser pulse shaping /
- feedback control
[1] Chin S L, Hosseini S A, Liu W, Luo Q, Théberge F, Aközbek N, Becker A, Kandidov V P, Kosareva O G, Schroeder H 2005 Can. J. Phys. 83 863Google Scholar
[2] Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 584Google Scholar
[3] Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 592Google Scholar
[4] Petersen C R, Prtljaga N, Farries M, Ward J, Napier B, Lloyd G R, Nallala J, Stone N, Bang O 2018 Opt. Lett. 43 999Google Scholar
[5] Dupont S, Petersen C, Thøgersen J, Agger C, Bang O, Keiding S R 2012 Opt. Express 20 4887Google Scholar
[6] Poudel C, Kaminski C F 2019 J. Opt. Soc. Am. B 36 A139Google Scholar
[7] Riedle E, Bradler M, Wenninger M, Sailer C F, Pugliesi I 2013 Faraday Discuss. 163 139Google Scholar
[8] Petersen C R, Moselund P M, Huot L, Hooper L, Bang O 2018 Infrared Phys. Technol. 91 182Google Scholar
[9] Kasparian J, Rodriguez M, Méjean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, Mysyrowicz A, Sauerbrey R 2003 Science 301 61Google Scholar
[10] Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135Google Scholar
[11] Price J H V, Feng X, Heidt A M, Brambilla G, Horak P, Poletti F, Ponzo G, Petropoulos P, Petrovich M, Shi J, Ibsen M, Loh W H, Rutt H N, Richardson D J 2012 Opt. Fiber Technol. 18 327Google Scholar
[12] Labruyère A, Tonello A, Couderc V, Huss G, Leproux P 2012 Opt. Fiber Technol. 18 375Google Scholar
[13] Lefort C, O’Connor R P, Blanquet V, Magnol L, Kano H, Tombelaine V, Lévêque P, Couderc V, Leproux P 2016 J. Biophotonics 9 709Google Scholar
[14] Budriunas R, Stanislauskas T, Adamonis J, Aleknavi Cius A, Veitas G, Gadonas D, Balickas S, Michailovas A, Varanavicius A 2017 Opt. Express 25 5797Google Scholar
[15] Hakala T, Suomalainen J, Kaasalainen S, Chen Y 2012 Opt. Express 20 7119Google Scholar
[16] Chin S, Petit S, Borne F, Miyazaki K 1999 Jpn. J. Appl. Phys. 38 L126Google Scholar
[17] Alfano R R 2006 The Supercontinuum Laser Source: Fundamentals with Updated References (New York: Springer) pp473–480
[18] Garejev N, Tamošauskas G, Dubietis A 2017 J. Opt. Soc. Am. B 34 88Google Scholar
[19] Dubietis A, Tamošauskas G, Šuminas R, Jukna V, Couairon A 2017 Lith. J. Phys. 57 113
[20] Lu C H, Tsou Y J, Chen H Y, Chen B H, Cheng Y C, Yang S D, Chen M C, Hsu C C, Kung A H 2014 Optica 1 400Google Scholar
[21] He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X, Wei Z Y 2017 Opt. Lett. 42 474Google Scholar
[22] Camino A, Hao Z Q, Liu X, Lin J Q 2014 Opt. Lett. 39 747Google Scholar
[23] Li D W, Xi T T, Zhang L Z, Tao H Y, Gao X, Lin J Q, Hao Z Q 2017 Opt. Express 25 23910Google Scholar
[24] Li D W, Zhang L Z, Xi T T, Hao Z Q 2019 J. Opt. 21 065501Google Scholar
[25] Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169Google Scholar
[26] Weiner A M 2011 Opt. Commun. 284 3669Google Scholar
[27] Mendoza-Yero O, Carbonell-Leal M, Doñate-Buendía C, Mínguez-Vega G, Lancis J 2016 Opt. Express 24 15307
[28] Hong Z F, Zhang Q B, Ali Rezvani S, Lan P F, Lu P X 2016 Opt. Express 24 4029Google Scholar
[29] Li P P, Cai M Q, Lü J Q, Wang D, Liu G G, Qian S X, Li Y, Tu C, Wang H T 2016 AIP Advances 6 125103Google Scholar
[30] Heck G, Sloss J, Levis R J 2006 Opt. Commun. 259 216Google Scholar
[31] Chen A M, Li S Y, Qi H X, Jiang Y F, Hu Z, Huang X R, Jin M X 2017 Opt. Commun. 383 144Google Scholar
[32] 常峻巍, 许梦宁, 王頔, 朱瑞晗, 奚婷婷, 张兰芝, 李东伟, 郝作强 2019 光学学报 39 0126021Google Scholar
Chang J W, Xu M N, Wang D, Zhu R H, Xi T T, Zhang L D, Li D W, Hao Z Q 2019 Acta Opt. Sin. 39 0126021Google Scholar
[33] Zhdanova A A, Shen Y J, Thompson J V, Scully M O, Yakovlev V V, Sokolov A V 2018 J. Mod. Opt. 65 1332Google Scholar
[34] Ackermann R, Salmon E, Lascoux N, Kasparian J, Rohwetter P, Stelmaszczyk K, Li S, Lindinger A, Wöste L, Béjot P 2006 Appl. Phys. Lett. 89 171117Google Scholar
[35] Thompson J V, Zhokhov P A, Springer M M, Traverso A J, Yakovlev V V, Zheltikov A M, Sokolov A V, Scully M O 2017 Sci. Rep. 7 43367Google Scholar
[36] Zhan L D, Xu M N, Xi T T, Hao Z Q 2018 Phys. Plasmas 25 103102Google Scholar
[37] Xu M N, Zhan L D, Xi T T, Hao Z Q 2019 J. Opt. Soc. Am. B 36 G6Google Scholar
-
图 1 实验装置示意图(M, 800 nm高反镜; G, 光栅; CL, 柱面镜; LC-SLM, 液晶空间光调制器; MLA, 微透镜阵列; L, 平凸透镜; FS, 熔融石英; DM, 二向色镜; IS, 积分球)
Figure 1. Schematic diagram of experimental setup. M, 800 nm HR mirror; G, grating; CL, cylindrical lens; LC-SLM, liquid crystal spatial light modulator; MLA, microlens array; L, plano-convex lens; FS, fused silica; DM, dichroic mirror; IS, integrating sphere.
-
[1] Chin S L, Hosseini S A, Liu W, Luo Q, Théberge F, Aközbek N, Becker A, Kandidov V P, Kosareva O G, Schroeder H 2005 Can. J. Phys. 83 863Google Scholar
[2] Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 584Google Scholar
[3] Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 592Google Scholar
[4] Petersen C R, Prtljaga N, Farries M, Ward J, Napier B, Lloyd G R, Nallala J, Stone N, Bang O 2018 Opt. Lett. 43 999Google Scholar
[5] Dupont S, Petersen C, Thøgersen J, Agger C, Bang O, Keiding S R 2012 Opt. Express 20 4887Google Scholar
[6] Poudel C, Kaminski C F 2019 J. Opt. Soc. Am. B 36 A139Google Scholar
[7] Riedle E, Bradler M, Wenninger M, Sailer C F, Pugliesi I 2013 Faraday Discuss. 163 139Google Scholar
[8] Petersen C R, Moselund P M, Huot L, Hooper L, Bang O 2018 Infrared Phys. Technol. 91 182Google Scholar
[9] Kasparian J, Rodriguez M, Méjean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, Mysyrowicz A, Sauerbrey R 2003 Science 301 61Google Scholar
[10] Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135Google Scholar
[11] Price J H V, Feng X, Heidt A M, Brambilla G, Horak P, Poletti F, Ponzo G, Petropoulos P, Petrovich M, Shi J, Ibsen M, Loh W H, Rutt H N, Richardson D J 2012 Opt. Fiber Technol. 18 327Google Scholar
[12] Labruyère A, Tonello A, Couderc V, Huss G, Leproux P 2012 Opt. Fiber Technol. 18 375Google Scholar
[13] Lefort C, O’Connor R P, Blanquet V, Magnol L, Kano H, Tombelaine V, Lévêque P, Couderc V, Leproux P 2016 J. Biophotonics 9 709Google Scholar
[14] Budriunas R, Stanislauskas T, Adamonis J, Aleknavi Cius A, Veitas G, Gadonas D, Balickas S, Michailovas A, Varanavicius A 2017 Opt. Express 25 5797Google Scholar
[15] Hakala T, Suomalainen J, Kaasalainen S, Chen Y 2012 Opt. Express 20 7119Google Scholar
[16] Chin S, Petit S, Borne F, Miyazaki K 1999 Jpn. J. Appl. Phys. 38 L126Google Scholar
[17] Alfano R R 2006 The Supercontinuum Laser Source: Fundamentals with Updated References (New York: Springer) pp473–480
[18] Garejev N, Tamošauskas G, Dubietis A 2017 J. Opt. Soc. Am. B 34 88Google Scholar
[19] Dubietis A, Tamošauskas G, Šuminas R, Jukna V, Couairon A 2017 Lith. J. Phys. 57 113
[20] Lu C H, Tsou Y J, Chen H Y, Chen B H, Cheng Y C, Yang S D, Chen M C, Hsu C C, Kung A H 2014 Optica 1 400Google Scholar
[21] He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X, Wei Z Y 2017 Opt. Lett. 42 474Google Scholar
[22] Camino A, Hao Z Q, Liu X, Lin J Q 2014 Opt. Lett. 39 747Google Scholar
[23] Li D W, Xi T T, Zhang L Z, Tao H Y, Gao X, Lin J Q, Hao Z Q 2017 Opt. Express 25 23910Google Scholar
[24] Li D W, Zhang L Z, Xi T T, Hao Z Q 2019 J. Opt. 21 065501Google Scholar
[25] Curtis J E, Koss B A, Grier D G 2002 Opt. Commun. 207 169Google Scholar
[26] Weiner A M 2011 Opt. Commun. 284 3669Google Scholar
[27] Mendoza-Yero O, Carbonell-Leal M, Doñate-Buendía C, Mínguez-Vega G, Lancis J 2016 Opt. Express 24 15307
[28] Hong Z F, Zhang Q B, Ali Rezvani S, Lan P F, Lu P X 2016 Opt. Express 24 4029Google Scholar
[29] Li P P, Cai M Q, Lü J Q, Wang D, Liu G G, Qian S X, Li Y, Tu C, Wang H T 2016 AIP Advances 6 125103Google Scholar
[30] Heck G, Sloss J, Levis R J 2006 Opt. Commun. 259 216Google Scholar
[31] Chen A M, Li S Y, Qi H X, Jiang Y F, Hu Z, Huang X R, Jin M X 2017 Opt. Commun. 383 144Google Scholar
[32] 常峻巍, 许梦宁, 王頔, 朱瑞晗, 奚婷婷, 张兰芝, 李东伟, 郝作强 2019 光学学报 39 0126021Google Scholar
Chang J W, Xu M N, Wang D, Zhu R H, Xi T T, Zhang L D, Li D W, Hao Z Q 2019 Acta Opt. Sin. 39 0126021Google Scholar
[33] Zhdanova A A, Shen Y J, Thompson J V, Scully M O, Yakovlev V V, Sokolov A V 2018 J. Mod. Opt. 65 1332Google Scholar
[34] Ackermann R, Salmon E, Lascoux N, Kasparian J, Rohwetter P, Stelmaszczyk K, Li S, Lindinger A, Wöste L, Béjot P 2006 Appl. Phys. Lett. 89 171117Google Scholar
[35] Thompson J V, Zhokhov P A, Springer M M, Traverso A J, Yakovlev V V, Zheltikov A M, Sokolov A V, Scully M O 2017 Sci. Rep. 7 43367Google Scholar
[36] Zhan L D, Xu M N, Xi T T, Hao Z Q 2018 Phys. Plasmas 25 103102Google Scholar
[37] Xu M N, Zhan L D, Xi T T, Hao Z Q 2019 J. Opt. Soc. Am. B 36 G6Google Scholar
Catalog
Metrics
- Abstract views: 9080
- PDF Downloads: 134
- Cited By: 0