Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Time-domain pulse characteristics of stimulated Brillouin scattering ocean lidar

JIA Xiaohong HE Xingdao SHI Jiulin

Citation:

Time-domain pulse characteristics of stimulated Brillouin scattering ocean lidar

JIA Xiaohong, HE Xingdao, SHI Jiulin
cstr: 32037.14.aps.74.20250132
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Stimulated Brillouin scattering lidar (SBS-LiDAR) technology possesses significant advantages such as high resolution, high signal-to-noise ratio, and strong anti-interference capacity, making it highly promising for simultaneous measurements of temperature, salinity, and sound velocity in seawater. Stimulated Brillouin scattering (SBS) is a nonlinear dynamic process characterized by temporal variations in its occurrence location, peak intensity, and spectral shape. Through numerical simulations of Stokes pulse, the conditions for SBS generation can be quantitatively determined, thereby establishing a theoretical foundation for optimizing lidar systems and enhancing their detection capabilities. Existing studies on Stokes pulses typically focus on specific experimental configurations under varying parameters, including medium properties, pump laser characteristics, and ambient environmental factors. There are still significant discrepancies in reported conclusions regarding the relationship between incident energy levels and pulse width variations, particularly in water-based environments where systematic research on the Stokes scattering pulse characteristics is clearly insufficient. In this study, a distributed noise model is used to theoretically simulate and analyze the time-domain signals of SBS in water at different laser wavelengths, pulse widths, and focal lengths. The characteristics of Stokes pulses generated by focused and non-focused configurations are investigated. The results indicate that under the same conditions, shorter incident wavelength produces significantly higher peak power of Stokes scattering light. The Stokes scattering light exhibits significant energy-dependent behavior: at low input energy, short pulse generates stronger scattering signal due to enhanced nonlinear interaction efficiency, while at high input energy, longer pulse exhibits excellent performance by maintaining temporal coherence. The larger focal length results in lower peak power but better pulse fidelity. As the incident energy increases, the pulse width of Stokes scattering light in the non-focused configuration exhibits a continuous increase. In contrast, for the focused configuration, the pulse width initially decreases and then increases, exhibiting an optimal compression value influenced by temperature and energy. At lower temperatures, the Stokes pulse width exhibits excellent compression performance near the threshold energy. Therefore, reducing secondary peak interference and suppressing spectral broadening are critical technical challenges that must be systematically addressed for short-range SBS-Lidar applications. In low-temperature detection scenarios, dynamic attenuation control becomes essential to prevent thermal stress-induced damage to photodetectors. These findings are of great significance in enhancing the performance of SBS-LiDAR system.
      Corresponding author: SHI Jiulin, jiulinshi@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41776111, 12264031) and the Defense Industrial Technology Development Program of China (Grant No. JCKY2019401D002).
    [1]

    Shen Y R 1984 The Principles of Nonlinear Optics (New York: Wiley

    [2]

    Eliasson B, Senior A, Rietveld M, Phelps A D R, Cairns R A, Ronald K, Speirs D C, Trines R M G M, McCrea I, Bamford R, Mendonça J T, Bingham R 2021 Nat. Commun. 12 6209Google Scholar

    [3]

    Zhao Y, Lei A, Kang N, Li F, Li X, Liu H, Lin Z, Yin H, Xu Y, Yi Y, Xu Z 2024 Phys. Rev. E 110 065206Google Scholar

    [4]

    Gonzalez-Herraez M, Song K Y, Thévenaz L 2005 Appl. Phys. Lett. 87 081113Google Scholar

    [5]

    Wei W, Yi L L, Jaouèn Y, Morvan M, Weisheng H 2015 Opto-Electronics and Communications Conference (OECC) Shanghai, China June 28–July 2, 2015 p1

    [6]

    Ballmann C W, Thompson J V, Traverso A J, Meng Z, Scully M O, Yakovlev V V 2015 Sci. Rep. 5 18139Google Scholar

    [7]

    Ballmann C W, Meng Z, Traverso A J, Scully M O, Yakovlev V V 2017 Optica 4 124Google Scholar

    [8]

    Shi J, Ouyang M, Gong W, Li S, Liu D 2008 Appl. Phys. B 90 569Google Scholar

    [9]

    Shi J, Xu J, Guo Y, Luo N, Li S, He X 2021 Phys. Rev. Appl 15 054024Google Scholar

    [10]

    Xu N, Liu Z, Zhang X, Xu Y, Luo N, Li S, Xu J, He X, Shi J 2021 Opt. Express 29 36442Google Scholar

    [11]

    Shi J, Xu N, Luo N, Li S, Xu J, He X 2022 Opt. Express 30 16419Google Scholar

    [12]

    Maier M, Rother W, Kaiser W 1967 Appl. Phys. Lett. 10 80Google Scholar

    [13]

    Hon D T 1981 Opt. Lett. 5 516Google Scholar

    [14]

    Eichler H J, Menzel R, Sander R, Smandek B 1992 Opt. Commun. 89 260Google Scholar

    [15]

    徐德 2008 硕士学位论文 (杭州: 浙江大学)

    Xu D 2008 M. S. Thesis ( Hangzhou: Zhejiang University

    [16]

    刘照虹 2018 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu Z H 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [17]

    哈斯乌力吉, 吕志伟, 滕云鹏, 刘述杰, 李强, 何伟明 2007 56 878Google Scholar

    Hasi W L J, Lv Z W, Teng Y P, Liu S J, Li Q, He W M 2007 Acta Phys. Sin. 56 878Google Scholar

    [18]

    郭少锋, 陆启生, 李强, 程湘爱, 邓少永, 曾学文 2004 强激光与粒子束 16 1106

    Guo S F, Lu Q S, Li Q, Cheng X A, Deng S Y, Zeng X W 2004 High Power Laser Part. Beams 16 1106

    [19]

    邓少永, 郭少锋, 陆启生, 程湘爱 2005 54 3164Google Scholar

    Deng S Y, Guo S F, Lu Q S, Cheng X A 2005 Acta Phys. Sin. 54 3164Google Scholar

    [20]

    He X, Tang Y, Shi J, Liu J, Cheng W, Mo X 2012 J. Mod. Opt. 59 1410Google Scholar

    [21]

    龚华平, 吕志伟, 林殿阳, 刘松江 2007 56 5263Google Scholar

    Gong H P, Lü Z W, Lin D Y, Liu S J 2007 Acta Phys. Sin. 56 5263Google Scholar

    [22]

    Zhu L, Bai Z, Chen Y, Jin D, Fan R, Qi Y, Ding J, Yan B, Wang Y, Lu Z 2022 Opt. Commun 515 128205Google Scholar

    [23]

    Boyd R W, Rzaewski K, Narum P 1990 Phys. Rev. A 42 5514Google Scholar

    [24]

    Levent S 2014 Electromagnetic Modeling and Simulation (IEEE) (New York: Wiley-IEEE Press) pp407–513

    [25]

    Schiemann S, Ubachs W, Hogervorst W 1997 IEEE J. Quantum Electron. 33 358Google Scholar

    [26]

    Shi J, Tang Y, Wei H, Zhang L, Zhang D, Shi J, Gong W, He X, Yang K, Liu D 2012 Appl. Phys. B 108 717Google Scholar

    [27]

    Feng C, Xu X, Diels J C 2017 Opt. Express 25 12421Google Scholar

    [28]

    Hirschberg J G, Byrne J D, Wouters A W, Boynton G C 1984 Appl. Opt. 23 2624Google Scholar

    [29]

    Millard R C, Seaver G 1990 Deep Sea Res. Part A 37 1909Google Scholar

    [30]

    Roquet F, Madec G, McDougall T J, Barker P M 2015 Ocean Modell. 90 29Google Scholar

    [31]

    Damzen M J, Vlad V, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (London: Institute of Physics Publishing) pp1–190

  • 图 1  水中SBS光束传输 (a)聚焦结构; (b)非聚焦结构

    Figure 1.  SBS beam transmission in water: (a) Focused structure; (b) unfocused structure.

    图 2  入射波长对时域SBS信号的影响 (a) SBS脉冲波形; (b)反射率

    Figure 2.  Effect of incident wavelength on SBS temporal profile: (a) SBS spectral line; (b) reflectivity.

    图 3  脉宽对时域SBS信号的影响 (a) SBS脉冲波形; (b)反射率

    Figure 3.  Effect of pulse width on SBS temporal profile: (a) SBS spectral line; (b) reflectivity.

    图 4  聚焦深度对时域SBS信号的影响

    Figure 4.  Effect of focal length on SBS temporal profile.

    图 5  SBS时域波形图 (a), (c)非聚焦结构; (b), (d)聚焦结构

    Figure 5.  SBS temporal profiles: (a), (c) Unfocused structure; (b), (d) focused structure.

    图 6  Stokes散射光的振幅变化 (a)聚焦结构; (b)非聚焦结构

    Figure 6.  Amplitude variation of Stokes light: (a) Focused structure; (b) unfocused structure.

    图 7  Stokes散射光空间归一化光强分布(z = 4.5 m) (a)聚焦结构; (b)非聚焦结构

    Figure 7.  Normalized intensity of the Stokes light (z = 4.5 m): (a) Focused structure; (b) unfocused structure.

    图 8  不同温度下Stokes散射光脉宽随能量的变化 (a)非聚焦结构; (b)聚焦结构

    Figure 8.  Variation of the pulse width of Stokes light with the incident energy at different temperatures: (a) Unfocused structure; (b) focused structure.

    图 9  脉宽压缩比变化 (a)非聚焦结构; (b)聚焦结构

    Figure 9.  Changes in pulse width compression ratio: (a) Unfocused structure; (b) focused structure.

    表 1  数值模拟参数设置

    Table 1.  Parameter setting for numerical simulation.

    参数数值参数数值
    波长/nm532增益系数/(cm·GW–1)3.8
    脉宽/ns8折射率1.333
    光斑尺寸/mm2.5声子寿命/ps200
    介质池长/m5衰减系数/m–10.06
    DownLoad: CSV
    Baidu
  • [1]

    Shen Y R 1984 The Principles of Nonlinear Optics (New York: Wiley

    [2]

    Eliasson B, Senior A, Rietveld M, Phelps A D R, Cairns R A, Ronald K, Speirs D C, Trines R M G M, McCrea I, Bamford R, Mendonça J T, Bingham R 2021 Nat. Commun. 12 6209Google Scholar

    [3]

    Zhao Y, Lei A, Kang N, Li F, Li X, Liu H, Lin Z, Yin H, Xu Y, Yi Y, Xu Z 2024 Phys. Rev. E 110 065206Google Scholar

    [4]

    Gonzalez-Herraez M, Song K Y, Thévenaz L 2005 Appl. Phys. Lett. 87 081113Google Scholar

    [5]

    Wei W, Yi L L, Jaouèn Y, Morvan M, Weisheng H 2015 Opto-Electronics and Communications Conference (OECC) Shanghai, China June 28–July 2, 2015 p1

    [6]

    Ballmann C W, Thompson J V, Traverso A J, Meng Z, Scully M O, Yakovlev V V 2015 Sci. Rep. 5 18139Google Scholar

    [7]

    Ballmann C W, Meng Z, Traverso A J, Scully M O, Yakovlev V V 2017 Optica 4 124Google Scholar

    [8]

    Shi J, Ouyang M, Gong W, Li S, Liu D 2008 Appl. Phys. B 90 569Google Scholar

    [9]

    Shi J, Xu J, Guo Y, Luo N, Li S, He X 2021 Phys. Rev. Appl 15 054024Google Scholar

    [10]

    Xu N, Liu Z, Zhang X, Xu Y, Luo N, Li S, Xu J, He X, Shi J 2021 Opt. Express 29 36442Google Scholar

    [11]

    Shi J, Xu N, Luo N, Li S, Xu J, He X 2022 Opt. Express 30 16419Google Scholar

    [12]

    Maier M, Rother W, Kaiser W 1967 Appl. Phys. Lett. 10 80Google Scholar

    [13]

    Hon D T 1981 Opt. Lett. 5 516Google Scholar

    [14]

    Eichler H J, Menzel R, Sander R, Smandek B 1992 Opt. Commun. 89 260Google Scholar

    [15]

    徐德 2008 硕士学位论文 (杭州: 浙江大学)

    Xu D 2008 M. S. Thesis ( Hangzhou: Zhejiang University

    [16]

    刘照虹 2018 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu Z H 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [17]

    哈斯乌力吉, 吕志伟, 滕云鹏, 刘述杰, 李强, 何伟明 2007 56 878Google Scholar

    Hasi W L J, Lv Z W, Teng Y P, Liu S J, Li Q, He W M 2007 Acta Phys. Sin. 56 878Google Scholar

    [18]

    郭少锋, 陆启生, 李强, 程湘爱, 邓少永, 曾学文 2004 强激光与粒子束 16 1106

    Guo S F, Lu Q S, Li Q, Cheng X A, Deng S Y, Zeng X W 2004 High Power Laser Part. Beams 16 1106

    [19]

    邓少永, 郭少锋, 陆启生, 程湘爱 2005 54 3164Google Scholar

    Deng S Y, Guo S F, Lu Q S, Cheng X A 2005 Acta Phys. Sin. 54 3164Google Scholar

    [20]

    He X, Tang Y, Shi J, Liu J, Cheng W, Mo X 2012 J. Mod. Opt. 59 1410Google Scholar

    [21]

    龚华平, 吕志伟, 林殿阳, 刘松江 2007 56 5263Google Scholar

    Gong H P, Lü Z W, Lin D Y, Liu S J 2007 Acta Phys. Sin. 56 5263Google Scholar

    [22]

    Zhu L, Bai Z, Chen Y, Jin D, Fan R, Qi Y, Ding J, Yan B, Wang Y, Lu Z 2022 Opt. Commun 515 128205Google Scholar

    [23]

    Boyd R W, Rzaewski K, Narum P 1990 Phys. Rev. A 42 5514Google Scholar

    [24]

    Levent S 2014 Electromagnetic Modeling and Simulation (IEEE) (New York: Wiley-IEEE Press) pp407–513

    [25]

    Schiemann S, Ubachs W, Hogervorst W 1997 IEEE J. Quantum Electron. 33 358Google Scholar

    [26]

    Shi J, Tang Y, Wei H, Zhang L, Zhang D, Shi J, Gong W, He X, Yang K, Liu D 2012 Appl. Phys. B 108 717Google Scholar

    [27]

    Feng C, Xu X, Diels J C 2017 Opt. Express 25 12421Google Scholar

    [28]

    Hirschberg J G, Byrne J D, Wouters A W, Boynton G C 1984 Appl. Opt. 23 2624Google Scholar

    [29]

    Millard R C, Seaver G 1990 Deep Sea Res. Part A 37 1909Google Scholar

    [30]

    Roquet F, Madec G, McDougall T J, Barker P M 2015 Ocean Modell. 90 29Google Scholar

    [31]

    Damzen M J, Vlad V, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (London: Institute of Physics Publishing) pp1–190

  • [1] Long Xin-Yu, Wang Pei-Pei, An Hong-Hai, Xiong Jun, Xie Zhi-Yong, Fang Zhi-Heng, Sun Jin-Ren, Wang Chen. Near forward scattering light of planar film target driven by broadband laser. Acta Physica Sinica, 2024, 73(12): 125202. doi: 10.7498/aps.73.20231613
    [2] Su Rong-Tao, Zhang Peng-Fei, Zhou Pu, Xiao Hu, Wang Xiao-Lin, Duan Lei, Lü Pin, Xu Xiao-Jun. Theoretical and numerical study on narrow-linewidth nanosecond pulsed Raman fiber amplifier. Acta Physica Sinica, 2018, 67(15): 154202. doi: 10.7498/aps.67.20172679
    [3] Su Rong-Tao, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Ma Yan-Xing, Duan Lei, Lü Pin, Xu Xiao-Jun. Self-phase modulation pre-compensation of narrowlinewidth pulsed fiber lasers. Acta Physica Sinica, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [4] Zhang Lei, Li Jin-Zeng. An unusual pulse compression of stimulated Brillouin scattering in water. Acta Physica Sinica, 2014, 63(5): 054202. doi: 10.7498/aps.63.054202
    [5] Liang Shan-Yong, Wang Jiang-An, Zhang Feng, Wu Rong-Hua, Zong Si-Guang, Wang Yu-Hong, Wang Le-Dong. Monte Carlo model and variance reduction method based on lidar of ship wake. Acta Physica Sinica, 2013, 62(1): 015205. doi: 10.7498/aps.62.015205
    [6] Di Hui-Ge, Hua Deng-Xin, Wang Yu-Feng, Yan Qing. Investigation on the correction of the Mie scattering lidar's overlapping factor and echo signals over the total detection range. Acta Physica Sinica, 2013, 62(9): 094215. doi: 10.7498/aps.62.094215
    [7] Liu Zhan-Jun, Hao Liang, Xiang Jiang, Zheng Chun-Yang. Hybrid simulation of stimulated Brillouin scattering in laser fusions. Acta Physica Sinica, 2012, 61(11): 115202. doi: 10.7498/aps.61.115202
    [8] Shen Fa-Hua, Shu Zhi-Feng, Sun Dong-Song, Wang Zhong-Chun, Xue Xiang-Hui, Chen Ting-Di, Dou Xian-Kang. Improvement of wind retrieval algorithm for Rayleigh Doppler lidar. Acta Physica Sinica, 2012, 61(3): 030702. doi: 10.7498/aps.61.030702
    [9] Liang Shan-Yong, Wang Jiang-An, Zhang Feng, Shi Sheng-Wei, Ma Zhi-Guo, Liu Tao, Wang Yu-Hong. Large dynamic range receiving technology with energy consumption based on wake lidar. Acta Physica Sinica, 2012, 61(11): 110701. doi: 10.7498/aps.61.110701
    [10] Shu Zhi-Feng, Dou Xian-Kang, Wang Zhong-Chun, Shen Fa-Hua, Sun Dong-Song, Xue Xiang-Hui, Chen Ting-Di. Wind retrieval algorithm of Rayleigh Doppler lidar. Acta Physica Sinica, 2011, 60(6): 060704. doi: 10.7498/aps.60.060704
    [11] Chen Xu-Dong, Shi Jin-Wei, Liu Juan, Liu Bao, Xu Yan-Xia, Shi Jiu-Lin, Liu Da-He. Amplification of stimulated Brillouin scattering by collinear laser pulse series with two orthogonal polarizations. Acta Physica Sinica, 2010, 59(2): 1047-1051. doi: 10.7498/aps.59.1047
    [12] Liu Juan, Bai Jian-Hui, Ni Kai, Jing Hong-Mei, He Xing-Dao, Liu Da-He. Attenuation characteristics of laser beam in water. Acta Physica Sinica, 2008, 57(1): 260-264. doi: 10.7498/aps.57.260
    [13] Lü Yue-Lan, Lü Zhi-Wei, Dong Yong-Kang. Controlling the optical limiting shape in stimulated Brillouin scattering by dye absorption. Acta Physica Sinica, 2007, 56(10): 5849-5854. doi: 10.7498/aps.56.5849
    [14] Hasi Wu-Li-Ji, Lü Zhi-Wei, Teng Yun-Peng, Liu Shu-Jie, Li Qiang, He Wei-Ming. Study on stimulated Brillouin scattering pulse waveform. Acta Physica Sinica, 2007, 56(2): 878-882. doi: 10.7498/aps.56.878
    [15] Hong Guang-Lie, Zhang Yin-Chao, Zhao Yue-Feng, Shao Shi-Sheng, Tan Kun, Hu Huan-Ling. Raman lidar for profiling atmospheric CO2. Acta Physica Sinica, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [16] Lü Yue-Lan, Dong Yong-Kang, Lü Zhi-Wei. Study on the control of optical limiting of pulse-shape in stimulated Brillouin scattering process. Acta Physica Sinica, 2006, 55(10): 5247-5251. doi: 10.7498/aps.55.5247
    [17] Deng Shao-Yong, Guo Shao-Feng, Lu Qi-Sheng, Cheng Xiang-Ai. Influence of pump laser parameters on stimulated Brillouin scattering. Acta Physica Sinica, 2005, 54(7): 3164-3172. doi: 10.7498/aps.54.3164
    [18] He Wei-Ming, Yang Jun, Lü Yue-Lan, Lü Zhi-Wei. The influences of seed on stimulated Brillouin scattering pulse shape fidelity in seeded single-cell. Acta Physica Sinica, 2004, 53(2): 468-472. doi: 10.7498/aps.53.468
    [19] Lü Yue-Lan, Lü Zhi-Wei, Dong Yong-Kang. Nonlinear propagation and power limiting of nanosecond laser pulse by stimulated Brillouin scattering in CCl4. Acta Physica Sinica, 2004, 53(7): 2170-2174. doi: 10.7498/aps.53.2170
    [20] Lü Zhi-Wei, Wang Xiao-Hui, Lin Dian-Yang, Wang Chao, Zhao Xiao-Yan, Tang Xiu-Zhang, Zhang Hai-Feng, Shan Yu-Sheng. A study on the stability of stimulated Brillouin scattering for KrF laser. Acta Physica Sinica, 2003, 52(5): 1184-1189. doi: 10.7498/aps.52.1184
Metrics
  • Abstract views:  410
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Received Date:  31 January 2025
  • Accepted Date:  25 February 2025
  • Available Online:  04 March 2025
  • Published Online:  05 May 2025

/

返回文章
返回
Baidu
map