-
Narrow-linewidth nanosecond pulsed Raman fiber amplifiers possess many applications such as in nonlinear frequency generation, remote sensing and quantum information. By considering nonlinear effects such as stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS), self-phase modulation (SPM) and cross-phase modulation (XPM), we build a nonlinear dynamical model of narrow-linewidth nanosecond pulsed Raman fiber amplifier. A numerical simulation model is also built and the simulation is carried out based on the parallelizable bidirectional finite difference time-domain method. The pulse evolution processes in time and spectral domain are simulated. The influences of pump pulse width, fiber length and signal laser power are studied in detail. It is found that SRS peak power threshold is not influenced by pump pulse width, however, pump pulse width will affect SBS threshold and output linewidth. When the pump pulse width is 800 ns, tens of MHz narrow linewidth can be obtained, but the SBS occurs as the increasing of pump energy, which limits the power scaling of the narrow-linewidth laser pulses. When the pump pulse width is 80 ns, the SBS is effectively suppressed and the peak power can be further increased, but the linewidth of output laser is easily broadened to hundreds of MHz. The simulation results also show that lower SRS threshold and higher efficiency can be obtained by using longer passive fiber, however, if shorter passive fiber is used, SPM and XPM can be weakened and narrower linewidth can be obtained. We build an experimental setup to study the influence of fiber length. In our experiment, a polarization-maintained passive fiber with a core diameter of 10 m and core numerical aperture of 0.08 is used as the Raman gain fiber. The signal laser is a 1120 nm single frequency continuous wave fiber laser with an average power of 20 mW, and the pump laser is a 1064 nm pulsed laser with a pulse width of~40 ns and repetition rate of 500 kHz. When the fiber lengths are 100 m and 80 m, the efficiencies of the pulsed Raman amplifier are, respectively, 51.5% and 38.2% at a pump power of 6.8 W. It can also be found that increasing signal power can increase the efficiency of the amplifier, but it will reduce the SBS threshold at the same time. Therefore, in order to balance the different nonlinear effects in the arrow-linewidth nanosecond pulsed Raman fiber amplifier, we should take laser power, linewidth and efficiency into consideration, and choose the suitable system parameters such as pump pulse width, fiber length and signal power. These analyses can serve as design guidelines for narrow-linewidth nanosecond pulsed fiber Raman amplifiers.
-
Keywords:
- fiber lasers /
- Raman lasers /
- stimulated Raman scattering /
- stimulated Brillouin scattering
[1] Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554
[2] Zheng Y, Yang Y, Wang J, Hu M, Liu G, Zhao X, Chen X, Liu K, Zhao C, He B, Zhou J 2016 Opt. Express 24 12063
[3] Yan P, Sun J, Li D, Wang X, Huang Y, Gong M, Xiao Q 2016 Opt. Express 24 19940
[4] Fu S, Shi W, Feng Y, Zhang L, Yang Z, Xu S, Zhu X, Norwood R A, Peyghambarian N 2017 J. Opt. Soc. Am. B 34 A49
[5] Xu S, Li C, Zhang W, Mo S, Yang C, Wei X, Feng Z, Qian Q, Shen S, Peng M, Zhang Q, Yang Z 2013 Opt. Lett. 38 501
[6] Zhang L M, Zhou S H, Zhao H, Zhang K, Hao J P, Zhang D Y, Zhu C, Li Y, Wang X F, Zhang H B 2014 Acta Phys. Sin. 63 134205 (in Chinese) [张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬 2014 63 134205]
[7] Huang Z, Liang X, Li C, Lin H, Li Q, Wang J, Jing F 2016 Appl. Opt. 55 297
[8] Carlson C G, Dragic P D, Price R K, Coleman J J, Swenson G R 2009 IEEE J. Sel. Top. Quantum Electron. 15 451
[9] Feng Y, Huang S, Shirakawa A, Ueda K 2004 Jpn. J. Appl. Phys. 43 722
[10] Agrawal G P 2013 Nonlinear Fiber Optics (Fifth Edition) (New York: Academic) pp296-297
[11] Dajani I, Vergien C, Robin C, Ward B 2013 Opt. Express 21 12038
[12] Zhang L, Hu J, Wang J, Feng Y 2012 Opt. Lett. 37 4796
[13] Zhang L, Cui S, Liu C, Zhou J, Feng Y 2013 Opt. Express 21 5456
[14] Boggio J M C, Marconi J D, Fragnito H L 2005 IEEE J. Lightwave Technol. 23 3808
[15] Qi Y F, Liu C, Zhou J, Chen W B, Dong J X, Wei Y R, Lou Q H 2010 Acta Phys. Sin. 59 3942 (in Chinese) [漆云凤, 刘驰, 周军, 陈卫标, 董景星, 魏运荣, 楼祺洪 2010 59 3942]
[16] Theeg T, Sayinc H, Neumann J, Kracht D 2012 IEEE Photon. Technol. Lett. 24 1864
[17] Feng Y, Taylor L R, Calia D B, Holzlner R, Hackenberg W 2009 Frontiers in Optics San Jose, October 18-22, 2009 PDPA4
[18] Su R T, Zhou P, Xiao H, Wang X L, Ma Y X, Si L, Xu X J 2012 Chinese Patent CN 102931574B (in Chinese) [粟荣涛, 周朴, 肖虎, 王小林, 马阎星, 司磊, 许晓军 2012 中国 发明专利 CN 102931574B]
[19] Su R T, Zhou P, Wang X L, L H, Xu X J 2014 J. Opt. 16 015201
[20] Runcorn T H, Murray R T, Kelleher E J, Popov S V, Taylor J R 2015 Opt. Lett. 40 3085
[21] Vergien C, Dajani I, Zeringue C 2010 Opt. Express 18 26214
[22] Zhang L, Jiang H, Cui S, Feng Y 2014 Opt. Lett. 39 1933
[23] Boyd R W, Rzyzewski K, Narum P 1990 Phys. Rev. A 42 5514
-
[1] Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554
[2] Zheng Y, Yang Y, Wang J, Hu M, Liu G, Zhao X, Chen X, Liu K, Zhao C, He B, Zhou J 2016 Opt. Express 24 12063
[3] Yan P, Sun J, Li D, Wang X, Huang Y, Gong M, Xiao Q 2016 Opt. Express 24 19940
[4] Fu S, Shi W, Feng Y, Zhang L, Yang Z, Xu S, Zhu X, Norwood R A, Peyghambarian N 2017 J. Opt. Soc. Am. B 34 A49
[5] Xu S, Li C, Zhang W, Mo S, Yang C, Wei X, Feng Z, Qian Q, Shen S, Peng M, Zhang Q, Yang Z 2013 Opt. Lett. 38 501
[6] Zhang L M, Zhou S H, Zhao H, Zhang K, Hao J P, Zhang D Y, Zhu C, Li Y, Wang X F, Zhang H B 2014 Acta Phys. Sin. 63 134205 (in Chinese) [张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬 2014 63 134205]
[7] Huang Z, Liang X, Li C, Lin H, Li Q, Wang J, Jing F 2016 Appl. Opt. 55 297
[8] Carlson C G, Dragic P D, Price R K, Coleman J J, Swenson G R 2009 IEEE J. Sel. Top. Quantum Electron. 15 451
[9] Feng Y, Huang S, Shirakawa A, Ueda K 2004 Jpn. J. Appl. Phys. 43 722
[10] Agrawal G P 2013 Nonlinear Fiber Optics (Fifth Edition) (New York: Academic) pp296-297
[11] Dajani I, Vergien C, Robin C, Ward B 2013 Opt. Express 21 12038
[12] Zhang L, Hu J, Wang J, Feng Y 2012 Opt. Lett. 37 4796
[13] Zhang L, Cui S, Liu C, Zhou J, Feng Y 2013 Opt. Express 21 5456
[14] Boggio J M C, Marconi J D, Fragnito H L 2005 IEEE J. Lightwave Technol. 23 3808
[15] Qi Y F, Liu C, Zhou J, Chen W B, Dong J X, Wei Y R, Lou Q H 2010 Acta Phys. Sin. 59 3942 (in Chinese) [漆云凤, 刘驰, 周军, 陈卫标, 董景星, 魏运荣, 楼祺洪 2010 59 3942]
[16] Theeg T, Sayinc H, Neumann J, Kracht D 2012 IEEE Photon. Technol. Lett. 24 1864
[17] Feng Y, Taylor L R, Calia D B, Holzlner R, Hackenberg W 2009 Frontiers in Optics San Jose, October 18-22, 2009 PDPA4
[18] Su R T, Zhou P, Xiao H, Wang X L, Ma Y X, Si L, Xu X J 2012 Chinese Patent CN 102931574B (in Chinese) [粟荣涛, 周朴, 肖虎, 王小林, 马阎星, 司磊, 许晓军 2012 中国 发明专利 CN 102931574B]
[19] Su R T, Zhou P, Wang X L, L H, Xu X J 2014 J. Opt. 16 015201
[20] Runcorn T H, Murray R T, Kelleher E J, Popov S V, Taylor J R 2015 Opt. Lett. 40 3085
[21] Vergien C, Dajani I, Zeringue C 2010 Opt. Express 18 26214
[22] Zhang L, Jiang H, Cui S, Feng Y 2014 Opt. Lett. 39 1933
[23] Boyd R W, Rzyzewski K, Narum P 1990 Phys. Rev. A 42 5514
Catalog
Metrics
- Abstract views: 6703
- PDF Downloads: 170
- Cited By: 0