Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Self-phase modulation pre-compensation of narrowlinewidth pulsed fiber lasers

Su Rong-Tao Xiao Hu Zhou Pu Wang Xiao-Lin Ma Yan-Xing Duan Lei Lü Pin Xu Xiao-Jun

Citation:

Self-phase modulation pre-compensation of narrowlinewidth pulsed fiber lasers

Su Rong-Tao, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Ma Yan-Xing, Duan Lei, Lü Pin, Xu Xiao-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • High peak power, single frequency nanosecond fiber lasers have aroused the intense interest in their applications such as nonlinear frequency generation, LIDAR, and remote sensing. However, self-phase modulation (SPM) will induce a temporally dependent phase shift φNL (L, t)=|Ap (0, t)|2γLeff, where Ap is the amplitude of pump wave, γ is the nonlinear parameter, and Leff is the effective fiber length. The nonlinear phase shift will broaden the spectral linewidth of pulsed laser, which degrades the coherence of the laser and influences the performance of the laser. In order to obtain laser pulses with narrower linewidth, we can phase-modulate the pulsed laser with a value of-φNL(L,t). Thus, the SPM induced the nonlinear phase shift can be eliminated, and the spectra of pulsed laser can remain during the amplification and transmission in the fiber. Stimulated Brillouin scattering (SBS) has very low threshold and should be taken into consideration in narrow linewidth fiber lasers. The SBS threshold, which is dependent on the linewidth of laser, will be changed at the same time when the SPM is pre-compensated for. Because the SPM pre-compensation will change the linewidth of the pulsed laser. According to three coupled amplitude equations, we numerically analyze the influence of SPM pre-compensation on SBS threshold and spectral characteristics. The stimulation results show that in a master oscillator power amplifier structured fiber laser system, when SPM is completely compensated for (φM(t)=φNL(L,t)), the spectrum of the output pulsed laser can be maintained as that of the laser seed, but the SBS threshold usually decreases. When the SPM is compensated for incompletely (φM(t) φNL(L,t)), the spectral linewidth of the output laser cannot be compressed to that of the laser seed, and the SBS threshold in this situation is lower than the SBS threshold obtained when φM(t)=φNL(L,t). When the SPM is overcompensated for (φM(t) > φNL(L, t)), the spectral linewidth of the output laser cannot be compressed to that of the laser seed either, but the the SBS threshold in this situation is higher than the SBS threshold when φM(t)=φNL(L,t). We also build an experimental setup to verify the feasibility of SPM compensation. In our experiment, the linewidth of the pulsed laser is reduced from 1.4 GHz to 120 MHz when SPM is compensated for by phase modulation. The SBS threshold of the system are measured before and after SPM pre-compensation, and correctness of theoretical simulation is experimentally verified. This analysis method can provide the design guidelines for narrow-linewidth pulsed fiber laser systems.
      Corresponding author: Su Rong-Tao, surongtao@126.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFF0104603), the China Postdoctoral Science Foundation (Grant No. 2017M620070) and the National Natural Science Foundation of China (Grant Nos. 61705265, 61705264).
    [1]

    Liu Y, Liu J, Chen W 2011 Chin. Opt. Lett. 9 090604

    [2]

    Liu A, Norsen M A, Mead R D 2005 Opt. Lett. 30 67

    [3]

    Shi W, Leigh M A, Zong J, Yao Z, Nguyen D T, Chavez-Pirson A, Peyghambarian N 2009 IEEE J. Sel. Top. Quantum Electron. 15 377

    [4]

    Zhu X, Liu J, Bi D, Zhou J, Diao W, Chen W 2012 Chin. Opt. Lett. 10 012801

    [5]

    Zhang X, Diao W, Liu Y, Liu J, Hou X, Chen W 2015 Proc. SPIE 9255 925503

    [6]

    Jiang J, Chang J H, Feng S J, Mao Q H 2010 Acta Phys. Sin. 59 7892 (in Chinese) [蒋建, 常建华, 冯素娟, 毛庆和 2010 59 7892]

    [7]

    Su R, Zhou P, Wang X, Zhang H, Xu X 2012 Opt. Lett. 37 3978

    [8]

    Geng J, Wang Q, Jiang Z, Luo T, Jiang S, Czarnecki G 2011 Opt. Lett. 36 2293

    [9]

    Shi W, Petersen E B, Nguyen D T, Yao Z, Chavez-Pirson A, Peyghambarian N, Yu J 2011 Opt. Lett. 36 3575

    [10]

    Fang Q, Shi W, Petersen E, Khanh K, Chavez-Pirson A, Peyghambarian N 2012 IEEE Photon. Technol. Lett. 24 353

    [11]

    Wu W, Ren T, Zhou J, Du S, Liu X 2012 Chin. Opt. Lett. 10 050604

    [12]

    Li P, Hu H, Yao Y, Chi J, Yang C, Zhao Z, Zhang G, Zhang M, Liang B, Ma C 2015 Proc. SPIE 9656 96560B

    [13]

    Wang X, Jin X, Zhou P, Wang X, Xiao H, Liu Z 2015 Opt. Express 23 4233

    [14]

    Su R, Zhou P, Wang X, Ma Y, Ma P, Xu X, Liu Z 2014 IEEE J. Sel. Top. Quantum Electron. 20 0903913

    [15]

    Kobyakov A, Sauer M, Chowdhury D 2010 Adv. Opt. Photon. 2 1

    [16]

    Zhang L, Zhang D, Shi J, Shi J, Gong W, Liu D 2012 Appl. Phys. B 109 137

    [17]

    Chang L P, Guo S Q, Fan W, Xu H, Ren H L, Wang X C, Chen B 2010 Acta Opt. Sin. 30 1112 (in Chinese) [常丽萍, 郭淑琴, 范薇, 徐红, 任宏亮, 汪小超, 陈柏 2010 光学学报 30 1112]

    [18]

    Liu Y K, Wang X L, Su R T, Ma P F, Zhang H W, Zhou P, Si L 2017 Acta Phys. Sin. 66 234203 (in Chinese) [刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊 2017 66 234203]

    [19]

    Wang X, Jin X, Wu W, Zhou P, Wang X, Xiao H, Liu Z 2015 IEEE Photon. Technol. Lett. 27 677

    [20]

    Perry M D, Ditmire T, Stuart B C 1994 Opt. Lett. 19 2149

    [21]

    Bao H, Gu M 2009 Opt. Lett. 34 148

    [22]

    Shi W, Petersen E B, Yao Z, Nguyen D T, Zong J, Stephen M A, Chavez-Pirson A, Peyghambarian N 2010 Opt. Lett. 35 2418

    [23]

    Su R T, Wang X L, Zhou P, Xu X J 2013 Laser Phys. Lett. 10 015105

    [24]

    Washburn B R, Buck J A, Ralph S E 2000 Opt. Lett. 25 445

    [25]

    Zaouter Y, Cormier E, Rigail P, Al E 2007 Proc. SPIE 6453 64530O

    [26]

    Munroe M J, Hamamoto M Y, Dutton D A 2009 Proc. SPIE 7195 71952N

    [27]

    Su R, Zhou P, Ma P, L H, Xu X 2013 Appl. Opt. 52 7331

    [28]

    Xu C, Mollenauer L, Liu X 2002 Electron. Lett. 38 1578

    [29]

    Agrawal G P 2013 Nonlinear Fiber Optics (Fifth Edition) (New York: Academic) pp370-372

    [30]

    Boyd R W, Rzyzewski K, Narum P 1990 Phys. Rev. A 49 5514

    [31]

    Hollenbeck D, Cantrell C D 2009 J. Lightwave Technol. 27 2140

    [32]

    Xu S, Li C, Zhang W, Mo S, Yang C, Wei X, Feng Z, Qian Q, Shen S, Peng M, Zhang Q, Yang Z 2013 Opt. Lett. 38 501

    [33]

    Xu S, Yang Z, Zhang W, Wei X, Qian Q, Chen D, Zhang Q, Shen S, Peng M, Qiu J 2011 Opt. Lett. 36 3708

    [34]

    Su R, Zhou P, Wang X, Xiao H, Xu X 2012 Chin. Opt. Lett. 10 111402

    [35]

    Su R, Zhou P, Wang X, L H, Xu X 2014 Opt. Commun. 316 86

  • [1]

    Liu Y, Liu J, Chen W 2011 Chin. Opt. Lett. 9 090604

    [2]

    Liu A, Norsen M A, Mead R D 2005 Opt. Lett. 30 67

    [3]

    Shi W, Leigh M A, Zong J, Yao Z, Nguyen D T, Chavez-Pirson A, Peyghambarian N 2009 IEEE J. Sel. Top. Quantum Electron. 15 377

    [4]

    Zhu X, Liu J, Bi D, Zhou J, Diao W, Chen W 2012 Chin. Opt. Lett. 10 012801

    [5]

    Zhang X, Diao W, Liu Y, Liu J, Hou X, Chen W 2015 Proc. SPIE 9255 925503

    [6]

    Jiang J, Chang J H, Feng S J, Mao Q H 2010 Acta Phys. Sin. 59 7892 (in Chinese) [蒋建, 常建华, 冯素娟, 毛庆和 2010 59 7892]

    [7]

    Su R, Zhou P, Wang X, Zhang H, Xu X 2012 Opt. Lett. 37 3978

    [8]

    Geng J, Wang Q, Jiang Z, Luo T, Jiang S, Czarnecki G 2011 Opt. Lett. 36 2293

    [9]

    Shi W, Petersen E B, Nguyen D T, Yao Z, Chavez-Pirson A, Peyghambarian N, Yu J 2011 Opt. Lett. 36 3575

    [10]

    Fang Q, Shi W, Petersen E, Khanh K, Chavez-Pirson A, Peyghambarian N 2012 IEEE Photon. Technol. Lett. 24 353

    [11]

    Wu W, Ren T, Zhou J, Du S, Liu X 2012 Chin. Opt. Lett. 10 050604

    [12]

    Li P, Hu H, Yao Y, Chi J, Yang C, Zhao Z, Zhang G, Zhang M, Liang B, Ma C 2015 Proc. SPIE 9656 96560B

    [13]

    Wang X, Jin X, Zhou P, Wang X, Xiao H, Liu Z 2015 Opt. Express 23 4233

    [14]

    Su R, Zhou P, Wang X, Ma Y, Ma P, Xu X, Liu Z 2014 IEEE J. Sel. Top. Quantum Electron. 20 0903913

    [15]

    Kobyakov A, Sauer M, Chowdhury D 2010 Adv. Opt. Photon. 2 1

    [16]

    Zhang L, Zhang D, Shi J, Shi J, Gong W, Liu D 2012 Appl. Phys. B 109 137

    [17]

    Chang L P, Guo S Q, Fan W, Xu H, Ren H L, Wang X C, Chen B 2010 Acta Opt. Sin. 30 1112 (in Chinese) [常丽萍, 郭淑琴, 范薇, 徐红, 任宏亮, 汪小超, 陈柏 2010 光学学报 30 1112]

    [18]

    Liu Y K, Wang X L, Su R T, Ma P F, Zhang H W, Zhou P, Si L 2017 Acta Phys. Sin. 66 234203 (in Chinese) [刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊 2017 66 234203]

    [19]

    Wang X, Jin X, Wu W, Zhou P, Wang X, Xiao H, Liu Z 2015 IEEE Photon. Technol. Lett. 27 677

    [20]

    Perry M D, Ditmire T, Stuart B C 1994 Opt. Lett. 19 2149

    [21]

    Bao H, Gu M 2009 Opt. Lett. 34 148

    [22]

    Shi W, Petersen E B, Yao Z, Nguyen D T, Zong J, Stephen M A, Chavez-Pirson A, Peyghambarian N 2010 Opt. Lett. 35 2418

    [23]

    Su R T, Wang X L, Zhou P, Xu X J 2013 Laser Phys. Lett. 10 015105

    [24]

    Washburn B R, Buck J A, Ralph S E 2000 Opt. Lett. 25 445

    [25]

    Zaouter Y, Cormier E, Rigail P, Al E 2007 Proc. SPIE 6453 64530O

    [26]

    Munroe M J, Hamamoto M Y, Dutton D A 2009 Proc. SPIE 7195 71952N

    [27]

    Su R, Zhou P, Ma P, L H, Xu X 2013 Appl. Opt. 52 7331

    [28]

    Xu C, Mollenauer L, Liu X 2002 Electron. Lett. 38 1578

    [29]

    Agrawal G P 2013 Nonlinear Fiber Optics (Fifth Edition) (New York: Academic) pp370-372

    [30]

    Boyd R W, Rzyzewski K, Narum P 1990 Phys. Rev. A 49 5514

    [31]

    Hollenbeck D, Cantrell C D 2009 J. Lightwave Technol. 27 2140

    [32]

    Xu S, Li C, Zhang W, Mo S, Yang C, Wei X, Feng Z, Qian Q, Shen S, Peng M, Zhang Q, Yang Z 2013 Opt. Lett. 38 501

    [33]

    Xu S, Yang Z, Zhang W, Wei X, Qian Q, Chen D, Zhang Q, Shen S, Peng M, Qiu J 2011 Opt. Lett. 36 3708

    [34]

    Su R, Zhou P, Wang X, Xiao H, Xu X 2012 Chin. Opt. Lett. 10 111402

    [35]

    Su R, Zhou P, Wang X, L H, Xu X 2014 Opt. Commun. 316 86

  • [1] Feng Yun-Long, Hou Shang-Lin, Lei Jing-Li, Wu Gang, Yan Zu-Yong. Analysis of acoustic modes induced by backward stimulated Brillouin scattering in acoustic wave-guided single mode optical fibers. Acta Physica Sinica, 2024, 73(5): 054207. doi: 10.7498/aps.73.20231710
    [2] Wang Jia-Qiang, Wu Zhi-Fang, Feng Su-Chun. Design of normal dispersion high nonlinear silica fiber and generation of flat optical frequency comb. Acta Physica Sinica, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [3] Sheng Quan, Wang Meng, Shi Chao-Du, Tian Hao, Zhang Jun-Xiang, Liu Jun-Jie, Shi Wei, Yao Jian-Quan. High-power narrow-linewidth single-frequency pulsed fiber amplifier based on self-phase modulation suppression via sawtooth-shaped pulses. Acta Physica Sinica, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [4] Li Xue-Jian, Cao Min, Tang Min, Mi Yue-An, Tao Hong, Gu Hao, Ren Wen-Hua, Jian Wei, Ren Guo-Bin. Inter-mode stimulated Brillouin scattering and simultaneous temperature and strain sensing in M-shaped few-mode fiber. Acta Physica Sinica, 2020, 69(11): 114203. doi: 10.7498/aps.69.20200103
    [5] Su Rong-Tao, Zhang Peng-Fei, Zhou Pu, Xiao Hu, Wang Xiao-Lin, Duan Lei, Lü Pin, Xu Xiao-Jun. Theoretical and numerical study on narrow-linewidth nanosecond pulsed Raman fiber amplifier. Acta Physica Sinica, 2018, 67(15): 154202. doi: 10.7498/aps.67.20172679
    [6] Liu Ya-Kun, Wang Xiao-Lin, Su Rong-Tao, Ma Peng-Fei, Zhang Han-Wei, Zhou Pu, Si Lei. Effect of phase modulation on linewidth and stimulated Brillouin scattering threshold of narrow-linewidth fiber amplifiers. Acta Physica Sinica, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [7] Shi Jun-Kai, Chai Lu, Zhao Xiao-Wei, Li Jiang, Liu Bo-Wen, Hu Ming-Lie, Li Yan-Feng, Wang Qing-Yue. Coupling dynamics for a photonic crystal fiber femtosecond laser nonlinear amplification system. Acta Physica Sinica, 2015, 64(9): 094203. doi: 10.7498/aps.64.094203
    [8] Wei Wei, Zhang Xia, Yu Hui, Li Yu-Peng, Zhang Yang-An, Huang Yong-Qing, Chen Wei, Luo Wen-Yong, Ren Xiao-Min. Slow light based on stimulated Brillouin scattering in microstructured fiber. Acta Physica Sinica, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [9] Liu Zhan-Jun, Hao Liang, Xiang Jiang, Zheng Chun-Yang. Hybrid simulation of stimulated Brillouin scattering in laser fusions. Acta Physica Sinica, 2012, 61(11): 115202. doi: 10.7498/aps.61.115202
    [10] Chen Wei, Meng Zhou, Zhou Hui-Juan, Luo Hong. Nonlinear phase noise analysis of long-haul interferometric fiber sensing system. Acta Physica Sinica, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [11] Wang Xiao-Lin, Zhou Pu, Ma Yan-Xing, Ma Hao-Tong, Li Xiao, Xu Xiao-Jun, Zhao Yi-Jun. Phase noise detection method in fiber lasers based onphase modulation and demodulation. Acta Physica Sinica, 2011, 60(8): 084203. doi: 10.7498/aps.60.084203
    [12] Zheng Di, Pan Wei. Feasibility study of nonlinear optical loop mirror in the cascaded stimwlated Brillouin scatteving-based slow light system. Acta Physica Sinica, 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [13] Xue Yu-Hao, Zhou Jun, He Bing, Qi Yun-Feng, Li Zhen, Liu Chi. Passive phase locking of fiber laser based on spatial filtering. Acta Physica Sinica, 2010, 59(11): 7869-7874. doi: 10.7498/aps.59.7869
    [14] Wang Xiao-Lin, Zhou Pu, Ma Yan-Xing, Ma Hao-Tong, Xu Xiao-Jun, Liu Ze-Jin, Zhao Yi-Jun. High precision phase control system in coherent combining of fiber laser based on stochastic parallel gradient descent algorithm. Acta Physica Sinica, 2010, 59(2): 973-979. doi: 10.7498/aps.59.973
    [15] Wang Chun-Can, Zhang Fan, Tong Zhi, Ning Ti-Gang, Jian Shui-Sheng. Study on the suppression of the stimulated Brillouin scattering in high-power single-frequency multicore fiber amplifier. Acta Physica Sinica, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [16] Liu Juan, Bai Jian-Hui, Ni Kai, Jing Hong-Mei, He Xing-Dao, Liu Da-He. Attenuation characteristics of laser beam in water. Acta Physica Sinica, 2008, 57(1): 260-264. doi: 10.7498/aps.57.260
    [17] Guo Shao-Feng, Lin Wen-Xiong, Lu Qi-Sheng, Chen Sui, Lin Zong-Zhi, Deng Shao-Yong, Zhu Yong-Xiang. Experimental research on stimulated Brillouin scattering in fused silica glass. Acta Physica Sinica, 2007, 56(4): 2218-2222. doi: 10.7498/aps.56.2218
    [18] Wang Yu-Lei, Lü Zhi-Wei, He Wei-Ming, Zhang Yi. Investigation on a high energy stimulated Brillouin scattering phase-conjugate mirror. Acta Physica Sinica, 2007, 56(2): 883-888. doi: 10.7498/aps.56.883
    [19] Wu Guo-Hua, Guo Hong, Liu Ming-Wei, Deng Dong-Mei, Liu Shi-Xiong. Comparison of wakefield and relativistic effects on the self-phase modulation and frequency shift of intense laser pulse propagation. Acta Physica Sinica, 2005, 54(7): 3213-3220. doi: 10.7498/aps.54.3213
    [20] Lü Zhi-Wei, Wang Xiao-Hui, Lin Dian-Yang, Wang Chao, Zhao Xiao-Yan, Tang Xiu-Zhang, Zhang Hai-Feng, Shan Yu-Sheng. A study on the stability of stimulated Brillouin scattering for KrF laser. Acta Physica Sinica, 2003, 52(5): 1184-1189. doi: 10.7498/aps.52.1184
Metrics
  • Abstract views:  7047
  • PDF Downloads:  147
  • Cited By: 0
Publishing process
  • Received Date:  19 March 2018
  • Accepted Date:  24 May 2018
  • Published Online:  20 August 2019

/

返回文章
返回
Baidu
map