-
Optomicrowave entanglement and optomagnonic entanglement have significant applications in constructing hybrid quantum network and optical controlling magnons. In this paper, a theoretical scheme of enhancing optomicrowave and optomagnonic entanglements is proposed, based on a coherent-feedback-assisted optomagnomechanical (OMM) system. By inserting a thin membrane between the input-output mirror and the high-reflective-mirror-attached YIG bridge, the system consists of four kinds of modes: optical mode, microwave mode, mechanical mode, and magnon mode. In this system, optical and microwave modes interact with each other through the mechanical mode, while the magnon mode couples with the microwave mode through magnetic-dipole interaction. The entanglement is originally generated between optical and phonon modes under the two-mode squeezing mechanism (blue-detuned driven), then the generated entanglement is transferred to the optical and microwave modes through the state transfer mechanism (red-detuned driven) between the microwave and phonon modes and is further transferred to the optical and magnon modes by the magnetic-dipole interaction between the microwave and magnon modes. Adopting the negative logarithm criterion, the variations of the optomicrowave and optomagnonic entanglements with different detunings, coupling strengths, and decay rates are thoroughly investigated. Furthermore, the optimal coherent feedback parameters and the physical mechanisms of generating and transferring entanglement are analyzed, and the entanglement enhancements by adding the feedback loop are discussed. The results show that after adding coherent feedback, optomicrowave and optomagnonic entanglements can be enhanced effectively within a wide range of parameters and the enhancement can also be well maintained. Our findings provide a theoretical basis for connecting different nodes (different physical systems) to construct hybrid quantum networks, flexibly controlling the quantum properties of magnons, and preparing macroscopic quantum states.
-
Keywords:
- optomagnomechanical system /
- coherent feedback /
- quantum entanglement
-
[1] Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K, Nakamura Y 2019 Appl. Phys. Express 12 070101
[2] Yuan H Y, Cao Y S, Kamra A, Duine R A, Yan P 2022 Phys. Rep. 965 1
[3] Ast M, Steinlechner S, Schnabel R 2016 Phys. Rev. Lett. 117 180801
[4] Hao J C, Du P L, Sun H X, Liu K, Zhang J, Yang R G, Gao J R 2024 Acta Phys. Sin. 73 074203 (in Chinese) [郝景晨,杜培林,孙恒信,刘奎,张静,杨荣国,郜江瑞 2024 物理报 73 074203]
[5] Wang D Y, Bai C H, Xing Y, Liu S T, Zhang S, Wang H F 2020 Phys. Rev. A 102 043705
[6] Bai C H, Wang D Y, Zhang S, Liu S T, Wang H F 2021 Phys. Rev. A 103 033508
[7] Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706
[8] Li J, Wallucks A, Benevides R, Fiaschi N, Hensen B, Alegre T P M, Gröblacher S, 2020 Phys. Rev. A 102 032402
[9] Zhong C C, Wang Z X, Zou C L, Zhang M Z, Han X, Fu W, Xu M R, Shankar S, Devoret M H, Tang H X, Jiang L 2000 Phys. Rev. Lett. 124 010511
[10] Krastanov S, Raniwala H, Holzgrafe J, Jacobs K, Lončar M, Reagor M J, Englund D R 2021 Phys. Rev. Lett. 127 040503
[11] Tian L 2013 Phys. Rev. Lett. 110 233602.
[12] Bagci T, Simonsen A, Schmid S, Villanueva L G, Zeuthen E, Appel J, Taylor J M, Sørensen A, Usami K, Schliesser A, Polzik E S 2014 Nature 507 81
[13] Zhong C C, Wang Z X, Zou C L, Zhang M Z, Han X, Fu W, Xu M R, Shankar S., Devoret M H, Tang H X, Jiang L 2020 Phys. Rev. Lett. 124 010511
[14] Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601
[15] Chen Y T, Du L, Zhang Y, Wu J H 2021 Phys. Rev. A 103 053712
[16] Qiu W Y, Cheng X H, Chen A X, Lan Y H, Nie W J 2022 Phys. Rev. A 105 063718
[17] Zhang X L, Bao Q Q, Yang M Z, Tian X S 2018 Acta Phys. Sin. 67 104203 (in Chinese) [张秀龙,鲍倩倩,杨明珠,田雪松 2018 67 104203]
[18] Zhou Y Y, Tian J F, Yan Z H, Jia X J 2019 Acta Phys. Sin. 68 064205 (in Chinese) [周瑶瑶,田剑锋,闫智辉,贾晓军 2019 68 064205]
[19] Fan Z Y, Qiu L, Gröblacher S, Li J 2023 Laser Photonics Rev. 17 2200866
[20] Luo Y X, Cong L J, Zheng Z G, Liu H Y, Ming Y, Yang R C 2023 Opt. Express 31 34764
[21] Di K, Tan S, Wang L Y, Cheng A Y, Wang X, Liu Y, Du J J 2023 Opt. Express 31 29491
[22] Fan Z Y, Qian H, Zuo X, Li J 2023 Phys. Rev. A 108 023501
[23] Fan Z Y, Qian H, Li J 2023 Quantum Sci. Technol. 8 015014
[24] Wiseman H M, Milburn G J 1994 Phys. Rev. A 49 4110
[25] Lloyd S 2000 Phys. Rev. A 62 022108
[26] Gough J E, James M R, Nurdin H I 2010 Phys. Rev. A 81 023804
[27] Jacobs K, Wang X T,Wiseman H M 2014 New J. Phys. 16 073036
[28] Harwood A, Brunelli M, Serafini A 2021 Phys. Rev. A 103 023509
[29] Li J, Li G, Zippilli S, Vitali D, Zhang T C 2017 Phys. Rev. A
[30] Peng R, Zhao C S, Yang Z, Yang J Y, Zhou L 2023 Phys. Rev. A 107 013507
[31] 95 043819
[32] Xin J, Pan X Z, Lu X M, Kong J, Li G L, Li X M 2020 Phys. Rev. Appl 14 024015
[33] Zheng Q J, Zhong W X, Cheng G L, Chen A X 2023 Results in Physics. 48 106422
[34] Li J, Zhu S Y 2019 New J. Phys. 21 085001
[35] Vidal G, Werner R F 2002 Phys. Rev. A 65 032314.
[36] Plenio M B 2005 Phys. Rev. Lett. 95 090503."
Metrics
- Abstract views: 126
- PDF Downloads: 8
- Cited By: 0