-
The transition of Ga+ ions from 4s² ¹S₀ to 4s4p ³P₀ has advantages such as a high quality factor and a small motional frequency shift, making it suitable as a reference for precision measurement experiments like optical clocks. Calculating the dynamic polarizability of 4s21S0-4s4p 3P0 transition for Ga+ ion is of great significance for exploring the potential applications of the Ga+ ion in the field of quantum precision measurement and for testing atomic and molecular structure theories. In this paper, the dynamic polarizability of the Ga+ ion 4s² ¹S₀ - 4s4p ³P₀ transition is theoretically calculated using the relativistic configuration interaction plus many-body perturbation (CI+MBPT) method. The "tune-out" wavelength for the 4s² ¹S₀ state and the 4s4p ³P₀ state, as well as the "magic" wavelength for the 4s² ¹S₀ - 4s4p ³P₀ transition, are also computed. It is observed that the resonant lines situated near a certain “turn-out” and “magic” wavelength can provide dominant contributions to the polarizability, while the remaining resonant lines generally contribute minimally. These " tune-out " and "magic" wavelengths provide theoretical guidance for precise measurements and are important for studying the atomic structure of Ga+ ions. The accurate determination of the difference in static polarizability between the 4s² ¹S₀ and 4s4p ³P₀ states is of significant importance. Additionally, based on the "polarizability scale" method, the paper discusses how the theoretical calculation errors in static polarizability measurements vary with wavelength, offering theoretical guidance for the further high-precision determination of the static polarizability of the 4s² ¹S₀ and 4s4p ³P₀ states. This is crucial for minimizing the uncertainty of the blackbody radiation (BBR) frequency shift in Ga+ optical clock and suppressing the systematic uncertainty.
-
Keywords:
- Dynamic polarizability /
- Ga+ /
- Atomic structure calculation /
- RCI+MBPT
-
[1] Safronova M S, Kozlov M G, Clark C W 2011Phys. Rev. Lett. 107 143006
[2] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019Phys. Rev. Lett. 123 033201
[3] Cui K F, Chao S J, Sun C L, Wang S M, Zhang P, Wei Y F, Yuan J B, Cao J, Shu H L, Huang X R 2022Eur. Phys. J. D 76 140
[4] Keller J, Burgermeister T, Kalincev D, Didier A, Kulosa A P, Nordmann T, Kiethe J, Mehlstäubler T E 2019Phys. Rev. A, 99 013405
[5] Cheng Y J, Mitroy J 2013J. Phys. B: At. Mol. Opt. Phys. 46 185004
[6] Tayal S S 1991 Phys. Scr. 43 270
[7] Wei Y F, Tang Z M, Li C B, Huang X R 2024Acta Physica Sinica 73 103103
[8] Wei, Y F, Chao S J, Cui K F, Li C B, Yu S C, Zhang H, Shu H L, Cao J, Huang X R 2024Phys. Rev. Lett. 133 033001
[9] Ma Z Y, Deng K, Wang Z Y, Wei W Z, Hao P, Zhang H X, Pang L R, Wang B, Wu F F, Liu H L, Yuan W H, Chang J L, Zhang J X, Wu Q Y, Zhang J, Lu Z H 2024Phys. Rev. Applied 21 044017
[10] Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016Phys. Rev. Lett. 116 063001
[11] Mitroy J, Safronova M S, Clark C W 2010J. Phys. B: At. Mol. Opt. Phys. 43 202001.
[12] Porsev S G, Derevianko A 2006 Phys. Rev. A 74020502(R)
[13] Zhang P, Cao J, Yuan J B, Liu D X, Yuan Y, Wei Y F, Shu H L, Huang X R 2021Metrologia 58 035001
[14] Arora B, Nandy D K, Sahoo B K, 2012Phys. Rev. A 85 012506.
[15] Wei Y F, Tang Z M, Li C B, Yang Y, Zou Y M, Cui K F, Huang X R 2022Chin. Phys. B 31, 083102
[16] Liu P L, Huang Y, Bian W, Shao H, Guan H, Tang Y B, Li C B, Mitroy J, Gao K L 2015 Phys. Rev. Lett. 114 223001
[17] Huang Y, Wang M, Chen Z, Li C B, Zhang H Q, Zhang B L, Tang L Y, Shi T Y, Guan H, Gao K L 2024New J. Phys. 26 043021
[18] Tang Y B, Qiao H X, Shi T Y, Mitroy J 2013Phys. Rev. A 87 042517
[19] Holmgren W F, Trubko R, Hromada I, Cronin A D 2012Phys. Rev. lett. 109 243004
[20] Herold C D, Vaidya V D, Li X, Rolston S L, Porto J V, Safronova M S 2012Phys. Rev. Lett. 109 243003
[21] Safronova M S, Zuhrianda Z, Safronova U I, Clark C W 2015 Phys. Rev. A 92 040501(R)
[22] Mitroy J, Zhang J Y, Bromley M W J, Rollin K G 2009 Eur. Phys. J. D 53 15
[23] Kallay M, Nataraj H S, Sahoo B K, Das B P, Visscher L 2011 Phys. Rev. A 83030503
[24] Yu Y M, Suo B B, Fan H 2013Phys. Rev. A 88 052518
[25] Dzuba V A, Flambaum V V, Kozlov M G 1996Phys. Rev. A 54 3948
[26] Kozlov M G, Porsev S G, Safronova M S, Tupitsyn I I 2015Comput. Phys. Commun. 195 199
[27] Tang Z M, Yu Y M, Jiang J, Dong C Z 2018J. Phys. B: At. Mol. Opt. Phys. 51 125002
[28] Cheng Y J, Jiang J, Mitroy J 2013Phys. Rev. A 88 022511
[29] Jiang J, Tang L Y, Mitroy J 2013Phys. Rev. A 87 032518
[30] Yu W W, Yu R M, Cheng Y J 2015 Chin. Phys. Lett. 32 123102
[31] Wu L, Wang X, Wang T, Jiang J, Dong C Z 2023New J. Phys. 25 043011
[32] Tang Z M, Wei Y F, Sahoo B K, Li C B, Yang Y, Zou Y M, Huang X R 2024Phys. Rev. A 110, 043108
[33] Kramida A, Ralchenko Yu, Reader J, NIST ASD Team 2024 NIST Atomic Spectra Database (ver. 5.12) [Online]. Available: https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD
[34] Hao L H, Liu J J 2018J. Appl. Spectrosc 85, 730
[35] Jonsson P, Andersson M, Sabel H and Brage T 2006J. Phys. B: At. Mol. Opt. Phys. 391813.
[36] Isberg B, Litzen U 1985Phys. Scr. 31 533
[37] Victor G A and Taylor W R 1983At. Data Nucl. Data Tables 28 107
[38] Chou H, Chi H and Huang K 1994Phys. Rev. A 49 2394
[39] Fischer C F and Hansen J E 1978Phys. Rev. A 17 1956
[40] Andersen T, Eriksen P, Poulsen O and Ramanujam P S 1979Phys. Rev. A 202621
[41] Fischer C F 2009Phys. Scr. T134 014019
[42] Ekman J, Godefroid M R, Hartman H 2014Atoms 2 215
[43] Yu W W, Yu R M, Cheng Y J, Zhou Y J 2016Chin. Phys. B 25 023101
Metrics
- Abstract views: 65
- PDF Downloads: 10
- Cited By: 0