Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synergy-based plasmon-induced transparency and optical switch and slow light applications

HU Shunan LI Deqiong ZHAN Jie GAO Enduo WANG Qi LIU Nanliu NIE Guozheng

Citation:

Synergy-based plasmon-induced transparency and optical switch and slow light applications

HU Shunan, LI Deqiong, ZHAN Jie, GAO Enduo, WANG Qi, LIU Nanliu, NIE Guozheng
cstr: 32037.14.aps.74.20250078
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Surface plasmons (SPs) are generated by the interaction of conduction electrons on the surface of a metallic medium with photons in light wave, and they have an important phenomenon called plasmon-induced transparency (PIT). The PIT effect is crucial for improving the performance of nano-optical devices by strengthening the interaction between light and matter, thereby enhancing coupling efficiency. As is well known, traditional PIT is mainly achieved through two main ways: either through destructive interference between bright and dark modes, or through weak coupling between two bright modes. Therefore, it is crucial to find a new excitation method to break away from these traditional approaches. In this work, we propose a single-layer graphene metasurface composed of longitudinal graphene bands and three transverse graphene strips, which can excite a tripe-PIT through the synergistic effect between two single-PITs. We then leverage the synergistic effect between these two single-PITs to realize a triple-PIT. This approach breaks away from the traditional method of generating PIT through the coupling of bright and dark modes. The numerical simulation results are also obtained using the finite-difference time-domain, which are highly consistent with the results of the coupled-mode theory, thereby validating the accuracy of the results. In addition, by adjusting the Fermi level and carrier mobility of graphene, the dynamic transition from a five-frequency asynchronous optical switch to a six-frequency asynchronous optical switch is successfully achieved. The six-frequency asynchronous optical switch demonstrates exceptional performance: at frequency points of 3.77 THz and 6.41 THz, the modulation depth and insertion loss reach 99.31% and 0.12 dB, respectively, while at the frequency point of 4.58 THz, the dephasing time and extinction ratio are 3.16 ps and 21.53 dB, respectively. Additionally, when the tuning range is from 2.8 THz to 3.1 THz band, the triple-PIT system exhibits a remarkably high group index of up to 1212. These performance metrics exceed those of most traditional slow-light devices. Based on these results, the structure is expected to provide new theoretical ideas for designing high-performance devices, such as optical switches and slow-light devices.
      Corresponding author: ZHAN Jie, 992007825@qq.com ; NIE Guozheng, gzhnie@hnust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61905075, 62173135), the Natural Science Foundation of the Education Department of Hunan Province, China (Grant Nos. 23A0454, 22A0433), and the Natural Science Foundation of Hunan Province, China (Grant Nos. 2022JJ30301, 2023JJ30195).
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [2]

    Ebbesen T W, Genet C, Bozhevolnyi S I 2008 Phys. Today 61 44Google Scholar

    [3]

    He Z H, Li Z X, Li C J, Xue W W, Cui W 2020 Opt. Express 28 17595Google Scholar

    [4]

    Xia S X, Zhai X, Wang L L, Wen S C 2018 Photonics Res. 6 692Google Scholar

    [5]

    Gramotnev, Dmitri K, Bozhevolnyi, Sergey I 2010 Nat. Photonics 4 83Google Scholar

    [6]

    Xu H, Chen Z Q, He Z H, Nie G Z, Li D Q 2020 New J. Phys. 22 123009Google Scholar

    [7]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884Google Scholar

    [8]

    Fan X B, Wang G P 2006 Opt. Lett. 31 1322Google Scholar

    [9]

    Cui W, Li C J, Ma H Q, Xu H, Yi Z, Ren X H, Cao X L, He Z H, Liu Z H 2021 Physica E 134 114850Google Scholar

    [10]

    Li Z L, Xie M X, Nie G Z, Wang J H, Huang L J 2023 J. Phys. Chem. Lett. 14 10762Google Scholar

    [11]

    Li Z L, Nie G Z, Wang J H, Fang Z, Zhan S P 2024 Phys. Rev. Appl. 21 034039Google Scholar

    [12]

    向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健 吴培亨 2023 72 128701Google Scholar

    Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phy. Sin. 72 128701Google Scholar

    [13]

    Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H 2015 Science 349 165Google Scholar

    [14]

    Chen P Y, Argyropoulos C, Farhat M, Gomez-Diaz J S 2017 Nanophotonics 6 1239Google Scholar

    [15]

    D’Apuzzo F, Piacenti A R, Giorgianni F, Autore M, Guidi M C, Marcelli A, Schade U, Lto Y, Chen M W, Lupi S 2017 Nat. commun. 8 14885Google Scholar

    [16]

    Sun Z P, Martinez A, Wang F 2016 Nat. Photonics 10 227Google Scholar

    [17]

    Vakil A, Engheta N 2011 Science 332 1291Google Scholar

    [18]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. 80 245435Google Scholar

    [19]

    Wang J Y, Zhao R Q, Yang M M, Liu Z F, Liu Z R 2013 J. Chem. Phys. 138 084701Google Scholar

    [20]

    Gan C H, Chu H S, Li E P 2012 Phys. Rev. B Condens. Matter 85 125431Google Scholar

    [21]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. photonics 6 749Google Scholar

    [22]

    Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X S, Guinea F, Avouris P, Xia F N 2013 Nat. Photonics 7 394Google Scholar

    [23]

    Lu H, Liu X M, Mao D 2012 Phys. Rev. A 85 53803Google Scholar

    [24]

    Zhao X L, Zhu L, Yuan C, Yao J Q 2016 Opt. Lett. 41 5470Google Scholar

    [25]

    Adato R, Artar A, Erramilli S, Altug H 2013 Nano. Lett. 13 2584Google Scholar

    [26]

    Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593Google Scholar

    [27]

    Kim T T, Kim H D, Zhao R K, Oh S S, Ha T, Chung D S, Lee Y H, Min B, Zhang S 2018 Acs. Photonics 5 1800Google Scholar

    [28]

    Jiang W J, Chen T 2021 Diam. Relat. Mater. 118 108531Google Scholar

    [29]

    Zhu J, Xiong J Y 2023 Measurement 220 113302Google Scholar

    [30]

    Lei P L, Nie G Z, Li H L, Li Z L, Peng L, Tang X F, Gao E D 2024 Phys. Scr. 99 075512Google Scholar

    [31]

    Zhou X W, Xu Y P, Li Y H, Cheng S B, Yi Z, Xiao G H, Wang Z Y, Chen Z Y 2022 Commun. Theor. Phys. 74 115501Google Scholar

    [32]

    Li J Y, Weng J, Li J Q, Chen S X, Guo Z C, Xu P B, Liu W J, Wen K H, Qin Y W 2022 J. Phys. D 55 445101Google Scholar

    [33]

    Li Y H, Xu Y P, Jiang J B, Cheng S B, Yi Z, Xiao G H, Zhou X W, Wang Z Y, Chen Z Y 2023 Phys. Chem. Chem. Phys. 25 3820Google Scholar

    [34]

    Li Y H, Xu Y P, Jiang J B, Ren L Y, Cheng S B, Yang W X, Ma C J, Zhou X W, Wang Z Y, Chen Z Y 2022 J. Phys. D 55 155101Google Scholar

    [35]

    Zhang R L, Cui Z R, Wen K H, Lv H P, Liu W J, Li C Q, Yu Y S, Liu R M 2025 Opt. Commun. 574 131083Google Scholar

    [36]

    Zheng S Q, Zhao Q X, Peng L, Jing X 2021 Results Phys. 23 104040Google Scholar

    [37]

    Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C, Wu K 2019 Opt. Express 27 3598Google Scholar

    [38]

    Liu C, Li H J, Xu H, Zhao M Z, Xiong C X, Zhang B H, Wu K 2019 J. Phys. D 52 405203Google Scholar

    [39]

    Li M, Xu H, Yang X J, Xu H Y, Liu P C, He L H, Nie G Z, Dong Y L, Chen Z Q 2023 Results Phys. 52 106798Google Scholar

    [40]

    Zheng L, Cheng X H, Cao D, Wang G, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H, Shen D S 2014 ACS Appl. Mater. 6 7014Google Scholar

    [41]

    Zheng L, Cheng X H, Cao D, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H 2014 Mater. Lett. 137 200Google Scholar

    [42]

    Li X S, Cai W W, An J, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S, Colombo L, Ruoff R 2009 Science 324 1312Google Scholar

    [43]

    Yin Y, Alivisatos A P 2005 Nature 437 664Google Scholar

    [44]

    Norris D J, Efros A L, Erwin S C 2008 Science 319 1776Google Scholar

    [45]

    Chen Y F, Johnson E, Peng X G 2007 J. Am. Chem. Soc. 129 10937Google Scholar

    [46]

    Wu D, Wang M, Feng H, Xu Z X, Liu Y P, Xia F, Zhang K, Kong W J, Dong L F, Yun M J 2019 Carbon 155 618Google Scholar

    [47]

    Falkovsky L A, Varlamov A A 2007 Eur. Phys. J. B 56 281Google Scholar

    [48]

    Rouhi N, Capdevila S, Jain D, Zand K, Wang Y Y, Brown E, Jofre L, Burke P 2012 Nano Res. 5 667Google Scholar

    [49]

    Cheng H, Chen S Q, Yu P, Duan X Y, Xie B Y, Tian J G 2013 Appl. Phys. Lett. 103 203112Google Scholar

    [50]

    Yu S L, Wu X Q, Wang Y P, Guo X, Tong L M 2017 Adv. Mater. 29 1606128.Google Scholar

    [51]

    Koester S J, Li H, Li M 2012 Opt. Express 20 20330Google Scholar

    [52]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X B, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936Google Scholar

    [53]

    Chen S, Yi X, Ma H, Wang H 2003 Opt. Quantum Electron. 35 1351Google Scholar

    [54]

    Lu Q, Wang Z Z, Huang Q Z, Jiang W, Wang Y, Xia J S 2017 J. Lightwave. Technol. 35 1710Google Scholar

    [55]

    Boyd R W, Shi Z M 2015 Slow and Fast Light In Photonics: Scientific Foundations, Technology and Applications (Vol. 1) ( John Wiley & Sons, Inc.) pp363–385

    [56]

    Zentgraf T, Zhang S, Oulton R F, Zhang X 2009 Phys. Rev. B 80 195415Google Scholar

    [57]

    Li M, Li H J, Xu H, Xiong C X, Zhao M Z, Liu C, Ruan B X, Zhang B H, Wu K 2020 New J. Phys. 22 103030Google Scholar

    [58]

    Zhang X, Liu Z, Zhang Z B, Gao E D, Luo X, Zhou F Q, Li H J, Zao Y 2020 Opt. Express 28 36771Google Scholar

    [59]

    Zhang X, Zhou F Q, Liu Z M, Zhang Z B, Qin Y P, Zhuo S S, Luo X, Gao E D, Li H J 2021 Opt. Express 29 29387Google Scholar

    [60]

    Xie Q, Guo L H, Zhang Z X, Gao P P, Wang M, Xia F, Zhang K, Sun P, Dong L F, Yun M J 2022 Appl. Surf. Sci. 604 154575Google Scholar

    [61]

    Ji C, Liu Z M, Zhou F Q, Luo X, Yang G X, Xie Y D, Yang R H 2023 J. Phys. D: Appl. Phys. 56 405102Google Scholar

    [62]

    Chang X, Li H J, Liu C, Li M, Ruan B X, Gao E D 2023 J Opt. Soc. Am. A 40 1545Google Scholar

    [63]

    Xu H Y, Xu H, Yang X J, Li M, Yu H F, Cheng Y X, Zhan S P, Chen Z Q 2024 Phys. Lett. A 504 129401Google Scholar

  • 图 1  (a)石墨烯超材料模型结构的全视图; (b)石墨烯结构侧视图; (c)石墨烯结构俯视图, Lx = Ly = 4 μm, m1 = 2.2 μm, m2 = 2.3 μm, m3 = 0.6 μm, s1 = 0.4 μm, s2 = 0.25 μm, w1 = 0.8 μm, w2 = 0.6 μm; (d)石墨烯结构的制备流程图

    Figure 1.  (a) Full view of the graphene metamaterial model structure; (b) side view of graphene structure; (c) top view of graphene structure, Lx = Ly = 4 μm, m1 = 2.2 μm, m2 = 2.3 μm, m3 = 0.6 μm, s1 = 0.4 μm, s2 = 0.25 μm, w1 = 0.8 μm, w2 = 0.6 μm; (d) flow chart for the preparation of graphene structures.

    图 2  耦合模理论示意图

    Figure 2.  Schematic diagram of coupled mode theory.

    图 3  (a), (b)不同石墨烯阵列的透射光谱; (c)整体结构形成的三重PIT透射谱(EF = 1 eV, μ = 1.0 m2/(V·s)); (d) Dip 1, Dip 2, Dip 3, Dip 4对应共振频率下的电场分布图

    Figure 3.  (a), (b) Transmission spectra of the different arrays; (c) triple-PIT transmission spectra formed by the overall structure (EF = 1 eV, μ = 1.0 m2/(V·s)); (d) plot of the electric field distribution at the corresponding resonance frequencies for Dip 1, Dip 2, Dip 3, and Dip 4.

    图 4  (a)三重PIT对应的透射光谱与石墨烯费米能级的关系; (b)不同费米能级下三维透射谱的演化

    Figure 4.  (a) Transmission spectra corresponding to the triple PIT versus graphene Fermi energy levels; (b) evolution of 3D transmission at different Fermi energy levels.

    图 5  (a)费米能级处于0.8 eV, 1.2 eV时, 载流子迁移率μ = 1.0 m2/(V·s)情况下五频异步光开关的调制, 其中“ON”表示“打开”, “OFF”表示“关闭”; (b)费米能级处于0.8 eV, 1.2 eV, 迁移率μ = 3.0 m2/(V·s)情况下的六频光开关调制

    Figure 5.  (a) Modulation of a five-frequency asynchronous optical switch with carrier mobility μ = 1.0 m2/(V·s) at Fermi energy levels of 0.8 eV, 1.2 eV, where “ON” means “open”, “OFF” means “close”; (b) six-frequency asynchronous optical switch modulation with Fermi energy levels at 0.8 eV, 1.2 eV and mobility μ = 3.0 m2/(V·s).

    图 6  (a)透射谱与载流子迁移率之间的关系(EF = 1.0 eV); (b)不同载流子迁移率下透射谱的演化; (c)不同载流子迁移率下Re(neff)的演化

    Figure 6.  (a) Relationship between transmission spectrum and carrier mobility (EF = 1.0 eV); (b) the evolution of the transmission spectrum with carrier mobility; (c) the evolution of Re(neff) with carrier mobility.

    图 7  (a)—(d)费米能级EF = 0.9, 1.0, 1.1, 1.2 eV的情况下群折射率和相移随频率的变化(μ = 3.0 m2/(V·s))

    Figure 7.  (a)–(d) Variation of group refractive index and phase shift with frequency for the Fermi energy levels EF = 0.9, 1.0, 1.1, 1.2 eV, respectively (μ = 3.0 m2/(V·s)).

    表 1  不同频率下DM, TD, LI, RE参数

    Table 1.  DM, TD, LI, RE parameters at different frequencies.

    μ = 1.0 m2/(V·s) μ = 3.0 m2/(V·s)
    Frequency/THz DM/% LI/dB TD/ps RE/dB Frequency/THz DM/% LI/dB TD/ps RE/dB
    3.12 85.46 0.14 3.57 8.02 2.56 94.53 0.70 7.12 9.89
    3.77 86.01 0.31 4.75 8.12 3.12 95.96 0.29 5.34 13.77
    4.58 96.02 0.11 4.08 13.15 3.77 99.31 0.17 4.56 17.26
    5.32 84.60 0.18 3.19 7.75 4.58 98.21 0.21 3.16 21.53
    6.41 95.12 0.26 3.70 12.03 5.32 98.65 0.18 5.97 18.24
    6.41 96.45 0. 12 3.73 16.11
    DownLoad: CSV

    表 2  不同图案化石墨烯的性能比较

    Table 2.  Comparison of the properties of different patterned graphene.

    Ref./year Modulation mode Material structure Group index DM/% LI/dB TD/ps RE/dB
    [57]/2020 Dual-frequency Single-layer patterned graphene 358 93.0 0.32
    [58]/2020 Multiple-frequency Single-layer patterned graphene 77.7 12.5
    [59]/2021 Multiple-frequency Single-layer patterned graphene 321 92.0 3.2
    [31]/2022 Multiple-frequency Single-layer patterned graphene 99.9 0.33 0.848
    [60]/2022 Multiple-frequency Single-layer patterned graphene 1100 97.1 0.04
    [61]/2023 Multiple-frequency Single-layer patterned graphene 97.7 5.4 3.86 16.41
    [62]/2023 Multiple-frequency Monolayer patterned black phosphorus 219 0.22
    [63]/2024 Multiple-frequency Single-layer patterned graphene 1000 87.5
    [30]/2024 Multiple-frequency Single-layer patterned graphene 781 98.0 0.51
    This work Multiple-frequency Single-layer patterned graphene 1212 99.3 0.120 3.16 21.53
    DownLoad: CSV
    Baidu
  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [2]

    Ebbesen T W, Genet C, Bozhevolnyi S I 2008 Phys. Today 61 44Google Scholar

    [3]

    He Z H, Li Z X, Li C J, Xue W W, Cui W 2020 Opt. Express 28 17595Google Scholar

    [4]

    Xia S X, Zhai X, Wang L L, Wen S C 2018 Photonics Res. 6 692Google Scholar

    [5]

    Gramotnev, Dmitri K, Bozhevolnyi, Sergey I 2010 Nat. Photonics 4 83Google Scholar

    [6]

    Xu H, Chen Z Q, He Z H, Nie G Z, Li D Q 2020 New J. Phys. 22 123009Google Scholar

    [7]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884Google Scholar

    [8]

    Fan X B, Wang G P 2006 Opt. Lett. 31 1322Google Scholar

    [9]

    Cui W, Li C J, Ma H Q, Xu H, Yi Z, Ren X H, Cao X L, He Z H, Liu Z H 2021 Physica E 134 114850Google Scholar

    [10]

    Li Z L, Xie M X, Nie G Z, Wang J H, Huang L J 2023 J. Phys. Chem. Lett. 14 10762Google Scholar

    [11]

    Li Z L, Nie G Z, Wang J H, Fang Z, Zhan S P 2024 Phys. Rev. Appl. 21 034039Google Scholar

    [12]

    向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健 吴培亨 2023 72 128701Google Scholar

    Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phy. Sin. 72 128701Google Scholar

    [13]

    Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H 2015 Science 349 165Google Scholar

    [14]

    Chen P Y, Argyropoulos C, Farhat M, Gomez-Diaz J S 2017 Nanophotonics 6 1239Google Scholar

    [15]

    D’Apuzzo F, Piacenti A R, Giorgianni F, Autore M, Guidi M C, Marcelli A, Schade U, Lto Y, Chen M W, Lupi S 2017 Nat. commun. 8 14885Google Scholar

    [16]

    Sun Z P, Martinez A, Wang F 2016 Nat. Photonics 10 227Google Scholar

    [17]

    Vakil A, Engheta N 2011 Science 332 1291Google Scholar

    [18]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. 80 245435Google Scholar

    [19]

    Wang J Y, Zhao R Q, Yang M M, Liu Z F, Liu Z R 2013 J. Chem. Phys. 138 084701Google Scholar

    [20]

    Gan C H, Chu H S, Li E P 2012 Phys. Rev. B Condens. Matter 85 125431Google Scholar

    [21]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. photonics 6 749Google Scholar

    [22]

    Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X S, Guinea F, Avouris P, Xia F N 2013 Nat. Photonics 7 394Google Scholar

    [23]

    Lu H, Liu X M, Mao D 2012 Phys. Rev. A 85 53803Google Scholar

    [24]

    Zhao X L, Zhu L, Yuan C, Yao J Q 2016 Opt. Lett. 41 5470Google Scholar

    [25]

    Adato R, Artar A, Erramilli S, Altug H 2013 Nano. Lett. 13 2584Google Scholar

    [26]

    Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593Google Scholar

    [27]

    Kim T T, Kim H D, Zhao R K, Oh S S, Ha T, Chung D S, Lee Y H, Min B, Zhang S 2018 Acs. Photonics 5 1800Google Scholar

    [28]

    Jiang W J, Chen T 2021 Diam. Relat. Mater. 118 108531Google Scholar

    [29]

    Zhu J, Xiong J Y 2023 Measurement 220 113302Google Scholar

    [30]

    Lei P L, Nie G Z, Li H L, Li Z L, Peng L, Tang X F, Gao E D 2024 Phys. Scr. 99 075512Google Scholar

    [31]

    Zhou X W, Xu Y P, Li Y H, Cheng S B, Yi Z, Xiao G H, Wang Z Y, Chen Z Y 2022 Commun. Theor. Phys. 74 115501Google Scholar

    [32]

    Li J Y, Weng J, Li J Q, Chen S X, Guo Z C, Xu P B, Liu W J, Wen K H, Qin Y W 2022 J. Phys. D 55 445101Google Scholar

    [33]

    Li Y H, Xu Y P, Jiang J B, Cheng S B, Yi Z, Xiao G H, Zhou X W, Wang Z Y, Chen Z Y 2023 Phys. Chem. Chem. Phys. 25 3820Google Scholar

    [34]

    Li Y H, Xu Y P, Jiang J B, Ren L Y, Cheng S B, Yang W X, Ma C J, Zhou X W, Wang Z Y, Chen Z Y 2022 J. Phys. D 55 155101Google Scholar

    [35]

    Zhang R L, Cui Z R, Wen K H, Lv H P, Liu W J, Li C Q, Yu Y S, Liu R M 2025 Opt. Commun. 574 131083Google Scholar

    [36]

    Zheng S Q, Zhao Q X, Peng L, Jing X 2021 Results Phys. 23 104040Google Scholar

    [37]

    Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C, Wu K 2019 Opt. Express 27 3598Google Scholar

    [38]

    Liu C, Li H J, Xu H, Zhao M Z, Xiong C X, Zhang B H, Wu K 2019 J. Phys. D 52 405203Google Scholar

    [39]

    Li M, Xu H, Yang X J, Xu H Y, Liu P C, He L H, Nie G Z, Dong Y L, Chen Z Q 2023 Results Phys. 52 106798Google Scholar

    [40]

    Zheng L, Cheng X H, Cao D, Wang G, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H, Shen D S 2014 ACS Appl. Mater. 6 7014Google Scholar

    [41]

    Zheng L, Cheng X H, Cao D, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H 2014 Mater. Lett. 137 200Google Scholar

    [42]

    Li X S, Cai W W, An J, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S, Colombo L, Ruoff R 2009 Science 324 1312Google Scholar

    [43]

    Yin Y, Alivisatos A P 2005 Nature 437 664Google Scholar

    [44]

    Norris D J, Efros A L, Erwin S C 2008 Science 319 1776Google Scholar

    [45]

    Chen Y F, Johnson E, Peng X G 2007 J. Am. Chem. Soc. 129 10937Google Scholar

    [46]

    Wu D, Wang M, Feng H, Xu Z X, Liu Y P, Xia F, Zhang K, Kong W J, Dong L F, Yun M J 2019 Carbon 155 618Google Scholar

    [47]

    Falkovsky L A, Varlamov A A 2007 Eur. Phys. J. B 56 281Google Scholar

    [48]

    Rouhi N, Capdevila S, Jain D, Zand K, Wang Y Y, Brown E, Jofre L, Burke P 2012 Nano Res. 5 667Google Scholar

    [49]

    Cheng H, Chen S Q, Yu P, Duan X Y, Xie B Y, Tian J G 2013 Appl. Phys. Lett. 103 203112Google Scholar

    [50]

    Yu S L, Wu X Q, Wang Y P, Guo X, Tong L M 2017 Adv. Mater. 29 1606128.Google Scholar

    [51]

    Koester S J, Li H, Li M 2012 Opt. Express 20 20330Google Scholar

    [52]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X B, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936Google Scholar

    [53]

    Chen S, Yi X, Ma H, Wang H 2003 Opt. Quantum Electron. 35 1351Google Scholar

    [54]

    Lu Q, Wang Z Z, Huang Q Z, Jiang W, Wang Y, Xia J S 2017 J. Lightwave. Technol. 35 1710Google Scholar

    [55]

    Boyd R W, Shi Z M 2015 Slow and Fast Light In Photonics: Scientific Foundations, Technology and Applications (Vol. 1) ( John Wiley & Sons, Inc.) pp363–385

    [56]

    Zentgraf T, Zhang S, Oulton R F, Zhang X 2009 Phys. Rev. B 80 195415Google Scholar

    [57]

    Li M, Li H J, Xu H, Xiong C X, Zhao M Z, Liu C, Ruan B X, Zhang B H, Wu K 2020 New J. Phys. 22 103030Google Scholar

    [58]

    Zhang X, Liu Z, Zhang Z B, Gao E D, Luo X, Zhou F Q, Li H J, Zao Y 2020 Opt. Express 28 36771Google Scholar

    [59]

    Zhang X, Zhou F Q, Liu Z M, Zhang Z B, Qin Y P, Zhuo S S, Luo X, Gao E D, Li H J 2021 Opt. Express 29 29387Google Scholar

    [60]

    Xie Q, Guo L H, Zhang Z X, Gao P P, Wang M, Xia F, Zhang K, Sun P, Dong L F, Yun M J 2022 Appl. Surf. Sci. 604 154575Google Scholar

    [61]

    Ji C, Liu Z M, Zhou F Q, Luo X, Yang G X, Xie Y D, Yang R H 2023 J. Phys. D: Appl. Phys. 56 405102Google Scholar

    [62]

    Chang X, Li H J, Liu C, Li M, Ruan B X, Gao E D 2023 J Opt. Soc. Am. A 40 1545Google Scholar

    [63]

    Xu H Y, Xu H, Yang X J, Li M, Yu H F, Cheng Y X, Zhan S P, Chen Z Q 2024 Phys. Lett. A 504 129401Google Scholar

  • [1] Xie Bao-Hao, Chen Hua-Jun, Sun Yi. Slow light effect caused by optomechanically induced transparency in multimode optomechanical system. Acta Physica Sinica, 2023, 72(15): 154203. doi: 10.7498/aps.72.20230663
    [2] Gu Xin, Zhang Hui-Fang, Li Ming-Yu, Chen Jun-Ya, He Ying. Theoretical analysis of tunable double plasmon induced transparency in three-ellipse-shaped resonator coupled waveguide. Acta Physica Sinica, 2022, 71(24): 247301. doi: 10.7498/aps.71.20221365
    [3] Wang Bo-Yun, Zhu Zi-Hao, Gao You-Kang, Zeng Qing-Dong, Liu Yang, Du Jun, Wang Tao, Yu Hua-Qing. Plasmon induced transparency effect based on graphene nanoribbon waveguide side-coupled with rectangle cavities system. Acta Physica Sinica, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [4] Zhu Zi-Hao, Gao You-Kang, Zeng Yan, Cheng Zheng, Ma Hong-Hua, Yi Xu-Nong. Three-band plasmon induced transparency effect based on four-disk resonator coupled waveguide system. Acta Physica Sinica, 2022, 71(24): 244201. doi: 10.7498/aps.71.20221397
    [5] Plasmon induced transparency effect based on graphene nanoribbon waveguide side–coupled with rectangle cavities system. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211397
    [6] Tu Xin, Chen Zhen-Min, Fu Hong-Yan. Reivew of silicon photonic switches. Acta Physica Sinica, 2019, 68(10): 104210. doi: 10.7498/aps.68.20190011
    [7] Chen Ying, Xie Jin-Chao, Zhou Xin-De, Zhang Can, Yang Hui, Li Shao-Hua. Semi-closed T-shaped-disk waveguide filter based on surface-plasmon-induced transparency. Acta Physica Sinica, 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [8] Yang You-Lei, Hu Ye-Min, Xiang Nong. Effects of trapping electrons on synergy of lower-hybrid wave and electron cyclotron wave. Acta Physica Sinica, 2017, 66(24): 245202. doi: 10.7498/aps.66.245202
    [9] He Yu-Juan, Zhang Xiao-Wen, Liu Yuan. Total dose dependence of hot carrier injection effect in the n-channel metal oxide semiconductor devices. Acta Physica Sinica, 2016, 65(24): 246101. doi: 10.7498/aps.65.246101
    [10] Lin Jian-Xiao, Wu Jiu-Hui, Liu Ai-Qun, Chen Zhe, Lei Hao. A nano-silicon-photonic switch driven by an optical gradient force. Acta Physica Sinica, 2015, 64(15): 154209. doi: 10.7498/aps.64.154209
    [11] Shen Yun, Fu Ji-Wu, Yu Guo-Ping. Influence of gain on propagation properties of slow light in one-dimensional periodic structures. Acta Physica Sinica, 2014, 63(17): 174202. doi: 10.7498/aps.63.174202
    [12] Qi Xin-Yuan, Cao Zheng, Bai Jin-Tao. The beam propagation based on one-dimensional separation modulated photonic lattices. Acta Physica Sinica, 2013, 62(6): 064217. doi: 10.7498/aps.62.064217
    [13] Wu Fang-Fang, Shen Yi-Feng, Wang Yong-Chun, Han Kui, Zhou Jie, Zhang Yuan, Chen Qiong. A compact and tunable photonic crystal switch based on defect resonance. Acta Physica Sinica, 2011, 60(1): 017801. doi: 10.7498/aps.60.017801
    [14] Zhou Jun, Ren Hai-Dong, Feng Ya-Ping. The pulsating propagation of spatial soliton in strongly nonlocal optical lattice. Acta Physica Sinica, 2010, 59(6): 3992-4000. doi: 10.7498/aps.59.3992
    [15] Xu Da-Wei, Liang Zhong-Zhu, Liang Jing-Qiu, Li Wei, Li Xiao-Qi, Sun Zhi-Dan, Wang Wei-Biao. Simulation and fabrication of flexible cantilever electromagnet actuated optical switch. Acta Physica Sinica, 2010, 59(4): 2479-2484. doi: 10.7498/aps.59.2479
    [16] Qin Xiao-Juan, Shao Yi-Quan, Guo Qi. Steering of optical beams in strongly nonlocal nonlinear media by spatial phase modulation. Acta Physica Sinica, 2007, 56(9): 5269-5275. doi: 10.7498/aps.56.5269
    [17] Miao Qing-Yuan, Huang De-Xiu, Zhang Xin-Liang, Yu Yong-Lin, Hong Wei. Theoretical study of wavelength conversion based on integrated twin-guide semiconductor optical amplifier optical switch. Acta Physica Sinica, 2007, 56(2): 902-907. doi: 10.7498/aps.56.902
    [18] Li Shi-Chen, Xue Ting, Yu Jian. . Acta Physica Sinica, 2002, 51(9): 2018-2021. doi: 10.7498/aps.51.2018
    [19] Xue Ting, Yu Jian, Yang Tian-Xin, Ni Wen-Jun, Li Shen-Chen. . Acta Physica Sinica, 2002, 51(7): 1521-1529. doi: 10.7498/aps.51.1521
    [20] YU ZHONG-YUAN, ZHANG XIAO-GUANG, LIU XIU-MIN. SHORT OPTICAL PULSE SWITCHING IN THREE-CORE NONLINEAR FIBER COUPLERS. Acta Physica Sinica, 2001, 50(5): 904-909. doi: 10.7498/aps.50.904
Metrics
  • Abstract views:  465
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  17 January 2025
  • Accepted Date:  22 February 2025
  • Available Online:  25 February 2025
  • Published Online:  05 May 2025

/

返回文章
返回
Baidu
map