搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

捕获电子对低杂波与电子回旋波的协同效应的影响

杨友磊 胡业民 项农

引用本文:
Citation:

捕获电子对低杂波与电子回旋波的协同效应的影响

杨友磊, 胡业民, 项农

Effects of trapping electrons on synergy of lower-hybrid wave and electron cyclotron wave

Yang You-Lei, Hu Ye-Min, Xiang Nong
PDF
导出引用
  • 电子回旋波和低杂波的协同效应可有效地提高两只波的电流驱动效率.本文数值研究了捕获电子效应对电子回旋波和低杂波协同的影响.结果显示,随着捕获角的增大,双波协同驱动电流会减小,且协同因子也会明显减小,即捕获角对两只波协同驱动流的影响要比其对单独驱动电流的影响更加敏感.通过加宽低杂波共振区可减弱电子回旋波电流驱动对捕获角的依赖,同时发现随着电子回旋波功率的增加,捕获角对电子回旋波电流驱动的影响也会变小.
    Steady state operation is essential for Tokamak-based fusion reactor, in which the plasma current has to be fully sustained and controlled by non-inductive methods. Lower-hybrid current drive is the most effective radio-frequency current drive method, which, however, has the drawback that the driven current profile is difficult to control. Electron cyclotron current drive has the ability to deposit power and drive current in a highly localized and robustly controllable way, while the efficiency of electron cyclotron current drive is known to be significantly lower than that of lower-hybrid current drive. Due to those complementary features, the combinative usage of lower-hybrid wave and electron cyclotron wave has been proposed. The current driven by simultaneously using the waves might be significantly larger than the sum of the currents driven by the waves individually in the same plasma conditions, which is the so-called synergy effect. While the lower-hybrid current drive and the electron cyclotron current drive are both affected by the trapping effect, which implies that the synergy effect between lower-hybrid current drive and the electron cyclotron current drive may also closely related to the trapping effect. In this paper, the effects of trapping on the synergy of lower-hybrid current drive and the electron cyclotron current drive are investigated by solving the bounce-averaged quasi-linear equation with different trapping angles. The diffusions induced by the lower-hybrid wave and the electron cyclotron wave are considered simultaneously. The resulting steady-state electron distribution function as a balance between the collisions and the wave-induced diffusions is obtained numerically by the CQL3D code, which is then integrated to calculate the driven plasma current. The velocity-space fluxes are analyzed for understanding the mechanism and the physics of the synergy process. It is found that the currents driven by the waves decrease as trapping angle increases. The synergy factors also decrease as trapping angle increases, which means that the current drive processes in the synergy case are more sensitive to the trapping effect than in the single wave case. The current driven by electron cyclotron wave drops rapidly with the increase of trapping angle, while the existence of lower-hybrid wave is helpful in decelerating the dropping. The lower-hybrid wave reduces the dependency of the electron cyclotron current drive on the trapping effect. The decouple effect turns stronger as the resonance region of the lower-hybrid wave becomes wider. Increasing the power of the electron cyclotron wave leads to more accelerated electrons and more electrons with relatively high parallel velocities, which results in stronger synergy effect and less dependence on trapping.
      通信作者: 胡业民, yeminhu@ipp.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11475220,11375234)资助的课题.
      Corresponding author: Hu Ye-Min, yeminhu@ipp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475220, 11375234).
    [1]

    Gormezano C, Sips A C C, Luce T C, Ide S, Becoulet A, Litaudon X, Isayama A, Hobirk J, Wade M R, Oikawa T, Prater R, Zvonkov A, Lloyd B, Suzuki T, Barbato E, Bonoli P, Phillips C K, Vdovin V, Joffrin E, Casper T, Ferron J, Mazon D, Moreau D, Bundy R, Kessel C, Fukuyama A, Hayashi N, Imbeaux F, Murakami M, Polevoi A R, St John H E 2007 Nucl. Fusion 47 S285

    [2]

    Fisch N J 1978 Phys. Rev. Lett. 41 873

    [3]

    Bonoli P T, Englade R C 1986 Phys. Fluids 29 2937

    [4]

    Peysson Y, Decker J, Nilsson E, Artaud J F, Ekedahl A, Goniche M, Hillairet J, Ding B, Li M, Bonoli P T, Shiraiwa S, Madi M 2016 Plasma Phys. Contr. Fusion 58 044008

    [5]

    Cesario R, Amicucci L, Castaldo C, Kempenaars M, Jachmich S, Mailloux J, Tudisco O, Galli A, Krivska A, Contributors J E 2011 Plasma Phys. Contr. Fusion 53 085011

    [6]

    Ding B J, Li M H, Liu F K, Shan J F, Li Y C, Wang M, Liu L, Zhao L M, Yang Y, Wu Z G, Feng J Q, Hu H C, Jia H, Cheng M, Zang Q, Lyu B, Duan Y M, Lin S Y, Wu J H, Hillairet J, Ekedahl A, Peysson Y, Goniche M, Tuccillo A A, Cesario R, Amicucci L, Shen B, Gong X Z, Xu G S, Zhao H L, Hu L Q, Li J G, Wan B N, EAST Team 2017 Nucl. Fusion 57 022022

    [7]

    Goniche M, Sharma P K, Basiuk V, Baranov Y, Castaldo C, Cesario R, Decker J, Delpech L, Ekedahl A, Hillairet J, Kirov K, Mazon D, Oosako T, Peysson Y, Prou M 2011 AIP Conf. Proc. 1406 407

    [8]

    Li J G, Luo J R, Wan B N, Liu Y X, Gong X Z, Li D C, Jie Y X, Li Z X, Xu X D 2000 Acta Phys. Sin. 49 2414 (in Chinese) [李建刚, 罗家融, 万宝年, 刘岳修, 龚先祖, 李多传, 揭银先, 李智秀, 徐东 2000 49 2414]

    [9]

    Decker J, Peysson Y, Hillairet J, Artaud J F, Basiuk V, Becoulet A, Ekedahl A, Goniche M, Hoang G T, Imbeaux F, Ram A K, Schneider M 2011 Nucl. Fusion 51 073025

    [10]

    Song Y T, Wu S T, Li J G, Wan B N, Wan Y X, Fu P, Ye M Y, Zheng J X, Lu K, Gao X G, Liu S M, Liu X F, Lei M Z, Peng X B, Chen Y 2014 IEEE Trans. Plasma Sci. 42 503

    [11]

    Prater R 2004 Phys. Plasmas 11 2349

    [12]

    Gnter S, Gantenbein G, Gude A, Igochine V, Maraschek M, Mck A, Saarelma S, Sauter O, Sips A C C, Zohm H 2003 Nucl. Fusion 43 161

    [13]

    Henderson M A, Alberti S, Angioni C, Arnoux G, Behn R, Blanchard P, Bosshard P, Camenen Y, Coda S, Condrea I, Goodman T P, Hofmann F, Hogge J P, Karpushov A, Manini A, Martynov A, Moret J M, Nikkola P, Nelson-Melby E, Pochelon A, Porte L, Sauter O, Ahmed S M, Andrebe Y, Appert K, Chavan R, Degeling A, Duval B P, Etienne P, Fasel D, Fasoli A, Favez J Y, Furno I, Horacek J, Isoz P, Joye B, Klimanov I, Lavanchy P, Lister J B, Llobet X, Magnin J C, Marletaz B, Marmillod P, Martin Y, Mayor J M, Mylnar J, Paris P J, Perez A, Peysson Y, Pitts R A, Raju D, Reimerdes H, Scarabosio A, Scavino E, Seo S H, Siravo U, Sushkov A, Tonetti G, Tran M Q, Weisen H, Wischmeier M, Zabolotsky A, Yhuang G 2003 Phys. Plasmas 10 1796

    [14]

    Fisch N J, Boozer A H 1980 Phys. Rev. Lett. 45 720

    [15]

    Alikaev V V, Parail V V 1991 Plasma Phys. Contr. Fusion 33 1639

    [16]

    Ridolfini V P, Barbato E, Bruschi A, Dumont R, Gandini F, Giruzzi G, Gormezano C, Granucci G, Panaccione L, Peysson Y, Podda S, Saveliev A N 2001 AIP Conf. Proc. 595 225

    [17]

    Chen S Y, Tang C J, Zhang X J 2013 Chin. Phys. Lett. 30 065202

    [18]

    Giruzzi G, Artaud J F, Dumont R J, Imbeaux F, Bibet P, Berger-By G, Bouquey F, Clary J, Darbos C, Ekedahl A, Hoang G T, Lennholm M, Maget P, Magne R, Segui J L, Bruschi A, Granucci G 2004 Phys. Rev. Lett. 93 255002

    [19]

    Fidone I, Giruzzi G, Granata G, Meyer R L 1984 Phys. Fluids 27 2468

    [20]

    Maehara T, Yoshimura S, Minami T, Hanada K, Nakamura M, Maekawa T, Terumichi Y 1998 Nucl. Fusion 38 39

    [21]

    Chen S Y, Hong B B, Liu Y, Lu W, Huang J, Tang C J, Ding X T, Zhang X J, Hu Y J 2012 Plasma Phys. Contr. Fusion 54 115002

    [22]

    Huang J, Bai X Y, Zeng H, Tang C J 2013 Acta Phys. Sin. 62 025202 (in Chinese) [黄捷, 白兴宇, 曾浩, 唐昌建 2013 62 025202]

    [23]

    Hong B B, Chen S Y, Tang C J, Zhang X J, Hu Y J 2012 Acta Phys. Sin. 61 115207 (in Chinese) [洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊 2012 61 115207]

    [24]

    Dumont R J, Giruzzi G 2005 Radio Frequency Power in Plasmas 787 257

    [25]

    Dumont R J, Giruzzi G 2004 Phys. Plasmas 11 3449

    [26]

    Jiao Y M, Long Y X, Dong J Q, Shi B R, Gao Q D 2005 Acta Phys. Sin. 54 180 (in Chinese) [焦一鸣, 龙永兴, 董家齐, 石秉仁, 高庆弟 2005 54 180]

    [27]

    Harvey R W, Mccoy M G 1992 IAEA Technical Committee Meeting on Advances in Simulation and Modeling of Thermonuclear Plasmas (Montreal: IAEA Institute of Physics Publishing) pp489-526

    [28]

    Kennel C F, Engelmann F 1966 Phys. Fluids 9 2377

  • [1]

    Gormezano C, Sips A C C, Luce T C, Ide S, Becoulet A, Litaudon X, Isayama A, Hobirk J, Wade M R, Oikawa T, Prater R, Zvonkov A, Lloyd B, Suzuki T, Barbato E, Bonoli P, Phillips C K, Vdovin V, Joffrin E, Casper T, Ferron J, Mazon D, Moreau D, Bundy R, Kessel C, Fukuyama A, Hayashi N, Imbeaux F, Murakami M, Polevoi A R, St John H E 2007 Nucl. Fusion 47 S285

    [2]

    Fisch N J 1978 Phys. Rev. Lett. 41 873

    [3]

    Bonoli P T, Englade R C 1986 Phys. Fluids 29 2937

    [4]

    Peysson Y, Decker J, Nilsson E, Artaud J F, Ekedahl A, Goniche M, Hillairet J, Ding B, Li M, Bonoli P T, Shiraiwa S, Madi M 2016 Plasma Phys. Contr. Fusion 58 044008

    [5]

    Cesario R, Amicucci L, Castaldo C, Kempenaars M, Jachmich S, Mailloux J, Tudisco O, Galli A, Krivska A, Contributors J E 2011 Plasma Phys. Contr. Fusion 53 085011

    [6]

    Ding B J, Li M H, Liu F K, Shan J F, Li Y C, Wang M, Liu L, Zhao L M, Yang Y, Wu Z G, Feng J Q, Hu H C, Jia H, Cheng M, Zang Q, Lyu B, Duan Y M, Lin S Y, Wu J H, Hillairet J, Ekedahl A, Peysson Y, Goniche M, Tuccillo A A, Cesario R, Amicucci L, Shen B, Gong X Z, Xu G S, Zhao H L, Hu L Q, Li J G, Wan B N, EAST Team 2017 Nucl. Fusion 57 022022

    [7]

    Goniche M, Sharma P K, Basiuk V, Baranov Y, Castaldo C, Cesario R, Decker J, Delpech L, Ekedahl A, Hillairet J, Kirov K, Mazon D, Oosako T, Peysson Y, Prou M 2011 AIP Conf. Proc. 1406 407

    [8]

    Li J G, Luo J R, Wan B N, Liu Y X, Gong X Z, Li D C, Jie Y X, Li Z X, Xu X D 2000 Acta Phys. Sin. 49 2414 (in Chinese) [李建刚, 罗家融, 万宝年, 刘岳修, 龚先祖, 李多传, 揭银先, 李智秀, 徐东 2000 49 2414]

    [9]

    Decker J, Peysson Y, Hillairet J, Artaud J F, Basiuk V, Becoulet A, Ekedahl A, Goniche M, Hoang G T, Imbeaux F, Ram A K, Schneider M 2011 Nucl. Fusion 51 073025

    [10]

    Song Y T, Wu S T, Li J G, Wan B N, Wan Y X, Fu P, Ye M Y, Zheng J X, Lu K, Gao X G, Liu S M, Liu X F, Lei M Z, Peng X B, Chen Y 2014 IEEE Trans. Plasma Sci. 42 503

    [11]

    Prater R 2004 Phys. Plasmas 11 2349

    [12]

    Gnter S, Gantenbein G, Gude A, Igochine V, Maraschek M, Mck A, Saarelma S, Sauter O, Sips A C C, Zohm H 2003 Nucl. Fusion 43 161

    [13]

    Henderson M A, Alberti S, Angioni C, Arnoux G, Behn R, Blanchard P, Bosshard P, Camenen Y, Coda S, Condrea I, Goodman T P, Hofmann F, Hogge J P, Karpushov A, Manini A, Martynov A, Moret J M, Nikkola P, Nelson-Melby E, Pochelon A, Porte L, Sauter O, Ahmed S M, Andrebe Y, Appert K, Chavan R, Degeling A, Duval B P, Etienne P, Fasel D, Fasoli A, Favez J Y, Furno I, Horacek J, Isoz P, Joye B, Klimanov I, Lavanchy P, Lister J B, Llobet X, Magnin J C, Marletaz B, Marmillod P, Martin Y, Mayor J M, Mylnar J, Paris P J, Perez A, Peysson Y, Pitts R A, Raju D, Reimerdes H, Scarabosio A, Scavino E, Seo S H, Siravo U, Sushkov A, Tonetti G, Tran M Q, Weisen H, Wischmeier M, Zabolotsky A, Yhuang G 2003 Phys. Plasmas 10 1796

    [14]

    Fisch N J, Boozer A H 1980 Phys. Rev. Lett. 45 720

    [15]

    Alikaev V V, Parail V V 1991 Plasma Phys. Contr. Fusion 33 1639

    [16]

    Ridolfini V P, Barbato E, Bruschi A, Dumont R, Gandini F, Giruzzi G, Gormezano C, Granucci G, Panaccione L, Peysson Y, Podda S, Saveliev A N 2001 AIP Conf. Proc. 595 225

    [17]

    Chen S Y, Tang C J, Zhang X J 2013 Chin. Phys. Lett. 30 065202

    [18]

    Giruzzi G, Artaud J F, Dumont R J, Imbeaux F, Bibet P, Berger-By G, Bouquey F, Clary J, Darbos C, Ekedahl A, Hoang G T, Lennholm M, Maget P, Magne R, Segui J L, Bruschi A, Granucci G 2004 Phys. Rev. Lett. 93 255002

    [19]

    Fidone I, Giruzzi G, Granata G, Meyer R L 1984 Phys. Fluids 27 2468

    [20]

    Maehara T, Yoshimura S, Minami T, Hanada K, Nakamura M, Maekawa T, Terumichi Y 1998 Nucl. Fusion 38 39

    [21]

    Chen S Y, Hong B B, Liu Y, Lu W, Huang J, Tang C J, Ding X T, Zhang X J, Hu Y J 2012 Plasma Phys. Contr. Fusion 54 115002

    [22]

    Huang J, Bai X Y, Zeng H, Tang C J 2013 Acta Phys. Sin. 62 025202 (in Chinese) [黄捷, 白兴宇, 曾浩, 唐昌建 2013 62 025202]

    [23]

    Hong B B, Chen S Y, Tang C J, Zhang X J, Hu Y J 2012 Acta Phys. Sin. 61 115207 (in Chinese) [洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊 2012 61 115207]

    [24]

    Dumont R J, Giruzzi G 2005 Radio Frequency Power in Plasmas 787 257

    [25]

    Dumont R J, Giruzzi G 2004 Phys. Plasmas 11 3449

    [26]

    Jiao Y M, Long Y X, Dong J Q, Shi B R, Gao Q D 2005 Acta Phys. Sin. 54 180 (in Chinese) [焦一鸣, 龙永兴, 董家齐, 石秉仁, 高庆弟 2005 54 180]

    [27]

    Harvey R W, Mccoy M G 1992 IAEA Technical Committee Meeting on Advances in Simulation and Modeling of Thermonuclear Plasmas (Montreal: IAEA Institute of Physics Publishing) pp489-526

    [28]

    Kennel C F, Engelmann F 1966 Phys. Fluids 9 2377

  • [1] 樊浩, 陈少永, 牟茂淋, 刘泰齐, 张业民, 唐昌建. 低杂波注入对剥离气球模的作用.  , 2024, 73(9): 095204. doi: 10.7498/aps.73.20240130
    [2] 刘冠男, 李新霞, 刘洪波, 孙爱萍. HL-2M托卡马克装置中螺旋波与低杂波的协同电流驱动.  , 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [3] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度.  , 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [4] 何玉娟, 章晓文, 刘远. 总剂量辐照对热载流子效应的影响研究.  , 2016, 65(24): 246101. doi: 10.7498/aps.65.246101
    [5] 黄捷, 白兴宇, 曾浩, 唐昌建. 托卡马克中ECW对LHW耦合特性的影响研究.  , 2013, 62(2): 025202. doi: 10.7498/aps.62.025202
    [6] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究.  , 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [7] 卢洪伟, 胡立群, 周瑞杰, 许平, 钟国强, 林士耀, 王少锋. HT-7 Tokamak离子回旋波和低杂波等离子体逃逸电子行为研究.  , 2010, 59(10): 7175-7181. doi: 10.7498/aps.59.7175
    [8] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动.  , 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [9] 焦一鸣, 龙永兴, 董家齐, 石秉仁, 高庆弟. 俘获电子效应对低杂波电流驱动的影响.  , 2005, 54(1): 180-185. doi: 10.7498/aps.54.180
    [10] 李建刚, 罗家融, 万宝年, 刘岳修, 龚先祖, 李多传, 揭银先, 李智秀, 徐旵东. 利用低杂波改善约束的实验研究.  , 2000, 49(12): 2414-2419. doi: 10.7498/aps.49.2414
    [11] 刘才根, 钱尚介, 万华明. 电子回旋波驱动的托卡马克芯部等离子体极向旋转.  , 1998, 47(9): 1515-1519. doi: 10.7498/aps.47.1515
    [12] 吴俊伶. 等离子体中相对论性电子回旋波色散关系.  , 1993, 42(5): 775-784. doi: 10.7498/aps.42.775
    [13] 周小兵, 赵长林. 电子回旋波使磁镜中捕获电子与逃逸电子相互转化.  , 1993, 42(8): 1257-1265. doi: 10.7498/aps.42.1257
    [14] 熊兴民. 氢和温度对质子辐照硅的正电子捕获的影响.  , 1992, 41(1): 162-169. doi: 10.7498/aps.41.162
    [15] 卞伯达, 林景, 郭世宠, 蔡诗东. 弱相对论捕获电子哨声模不稳定性.  , 1990, 39(2): 218-224. doi: 10.7498/aps.39.218
    [16] 张军, 王恩耀, 关维恕, 程仕清, 段淑云, 顾彪, 尚振奎. 电子束注入简单磁镜中被电子迴旋共振加热捕获的实验研究.  , 1990, 39(8): 115-120. doi: 10.7498/aps.39.115-2
    [17] 夏蒙棼, 吴惟敏. 低杂波驱动的加速效应.  , 1989, 38(4): 619-628. doi: 10.7498/aps.38.619
    [18] 夏蒙棼. 低杂波驱动的共振电子径向能量输运.  , 1988, 37(8): 1381-1385. doi: 10.7498/aps.37.1381
    [19] 夏蒙棼, 吴惟敏. 低杂波驱动的径向共振电子流.  , 1987, 36(7): 881-891. doi: 10.7498/aps.36.881
    [20] 李大丰, 马中芳, 陈激. 低杂波有质动力的非线性二维效应.  , 1982, 31(2): 170-179. doi: 10.7498/aps.31.170
计量
  • 文章访问数:  5505
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-03
  • 修回日期:  2017-08-18
  • 刊出日期:  2017-12-05

/

返回文章
返回
Baidu
map