-
Pattern discharge is a common mode in dielectric barrier discharge (DBD) and has broad application prospects in various industrial fields, such as material surface treatment, environmental monitoring, and biomedical applications. In this work, a mixed gas of 75% argon and 25% air was used to generate pattern discharge. A double-gap boundary composed of hexagonal and square configurations was employed, and the gas pressure was fixed at 20 kPa. By varying the applied voltage amplitude, single-ring pattern, square-point-line pattern, square lattice pattern, and annular-lattice pattern were obtained for the first time. The discharge characteristics and their temporal correlation were studied using both optical and electrical methods. The results show that the discharge patterns exhibit multiple discharges within each half of the voltage cycle, and these discharges are temporally correlated. Time-resolved discharge images of the square lattice pattern were captured using an enhanced charge-coupled device (ICCD). Experimental results reveal that multiple discharges within a half-voltage cycle correspond to the ignition process of the pattern in the radial direction from the outside to the inside. The morphology of the square lattice pattern observed by the naked eye is actually the result of the temporal superposition of luminescence from points at different positions during the evolution process. The formation mechanism of this pattern was analyzed through electric field simulations and theoretical calculations. Plasma parameters were diagnosed by collecting the emission spectrum of the square dot-lattice pattern. The results showed that the electron density gradually decreases radially from the outer to the inner region, while the electron temperature and molecular vibrational temperature increase radially from the outer to the inner region, and the molecular rotational temperature remains almost unchanged.
-
[1] Zhang J, Tang W W, Wang Y H, Wang D Z 2023 Plasma Sources Sci. Technol. 32 055005
[2] Li J Y, Zhou D S, Rebrov E, Tang X, Kim M 2024 J. Phys. D: Appl. Phys. 57 395201
[3] Fang J L, Zhang Y R, Lu C Z, Gu L L, Xu S F, Guo Y, Shi J J 2024 Chin. Phys. B 33 015201
[4] Guan H L, Chen X R, Jiang T, Du H, Paramane A, Zhou H 2020 Chin. Phys. B 29 075204
[5] Li X C, Liu R J, Li X N, Gao K, Wu J C, Gong D D, Jia P Y 2019 Phys. Plasmas 26 023510
[6] Remy A, Geyter N D, Reniers F 2023 Plasma Process. Polym 20 2200201
[7] Hosseini H 2023 RSC Adv. 13 28211
[8] Li Y W, Yuan H, Zhou X F, Liang J P, Liu Y Y, Chang D L, Yang, D Z 2022 Catalysts 12 203
[9] Song H, Dang Y M, Ki S H, Park S, Ha J H 2024 LWT 207 116637
[10] Domonkos M, Tichá P, Trejbal J, Demo P 2021 Appl. Sci. 11 4809
[11] Massines F, Sarra-Bournet C, Fanelli F, Naudé N, Gherardi N 2012 Plasma Process. Polym 9 1041
[12] Akishev Y, Alekseeva T, Karalnik V, Petryakov A 2022 Plasma Sources Sci. Technol. 31 084001
[13] Tschiersch R, Nemschokmichal S, Bogaczyk M, Meichsner J 2017 J. Phys. D: Appl. Phys. 50 415206
[14] Liu K, Fang Z, Dai D 2023 Acta Phys. Sin. 72 135201(刘凯,方泽,戴栋 2023 72 135201)
[15] Ran J X, Zhang X X, Zhang Y, Wu K Y, Zhao N, He X R, Dai X H, Liang Q H, Li X C 2023 Plasma Sci. Technol. 25 055403
[16] Lu X P, Fang Z, Dai D, Shao T, Liu F, Zhang C, Liu D W, Nie L L, Jiang C Q 2023 High Voltage 8 1132
[17] Brandenburg R 2018 Plasma Sources Sci. Technol. 26 053001
[18] Wang Y Y, Yan H J, Li T, Bai X D, Wang X, Song J, Zhang Q Z 2023 AIP Advances 13 085327
[19] Wang H R, Hao Y P, Fang Q, Su H W, Yang L, Li L C 2020 Acta Phys. Sin. 69 145203 (万海容,郝艳捧,房强,苏恒炜,阳林,李立浧 2020 69 145203)
[20] Wu K Y, Wu J C, Jia B Y, Ren C H, Kang P C, Jia P Y, Li X C 2020 Phys. Plasmas 27 082308
[21] Ouyang J T, Li B, He F, Dai D 2018 Plasma Sci. Technol 20 103002
[22] Hao Y P, Han Y Y, Huang Z M, Yang L, Dai D, Li L C 2018 Phys. Plasmas 25 013516
[23] Li X C, Liu R, Jia P Y, Wu K Y, Ren C H, Yin Z Q 2018 Phys. Plasmas 25 013512
[24] Li Z Y, Jin S H, Xian Y B, Nie L L, Liu D W, Lu X P 2021 Plasma Sources Sci. Technol. 30 065026
[25] Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 075003
[26] Zhang J H, Pan Y Y, Feng J Y, He Y N, Chu J H, Dong L F 2023 Plasma Sci. Technol. 25 025406
[27] Duan X X, Ouyang J T, Zhao X F, He F 2009 Phys. Rev. E 80 016202
[28] Wang X, Yan H J, Wang Y Y, Yu S Q, Li T, Song J 2023 J. Phys. D: Appl. Phys. 56 105201
[29] Mokrov M S, Raizer Y P 2018 Plasma Sources Sci. Technol 27 065008
[30] Hao F, Dong L F, Du T, Liu Y, Fan W L, Pan Y Y 2018 Phys. Plasmas 25 033510
[31] Han R, Dong L F, Huang J Y, Sun H Y, Liu B B, Mi Y L 2019 Chin. Phys. B 28 075204
[32] Sun H Y, Dong L F, Liu F C, Mi Y L, Han R, Huang J Y, Liu B B, Hao F, Pan Y Y 2018 Phys. Plasmas 25 113507
[33] Wei L Y, Dong L F, Fan W L, Liu F C, Feng J Y, Pan Y Y 2018 Sci Rep 8 3835
[34] Feng J Y, Dong L F, Wei L Y, Fan W L, Li C X, Pan Y Y 2016 Phys. Plasmas 23 093502
[35] Pan Y Y, Li Y H, Dou Y Y, Fu G S, Dong L F 2022 Phys. Plasmas 29 053502
[36] Liu F C, Liu Y N, Liu Q, Wu Z C, Liu Y H, Gao K Y, He Y F, Fan W L, Dong L F 2022 Plasma Sources Sci. Technol 31 025015
[37] Li C X, Dong L F, Feng J Y, Huang Y P 2019 Phys. Plasmas 26 023505
[38] Pan Y Y, Feng J Y, Li C X, Dong L F 2022 Plasma Sci. Technol. 24 115401
[39] Li Y H, Pan Y Y, Tian M, Wang Y, He Y N, Zhang J H, Chu J H, Dong L F 2023 Phys. Plasmas 30 033502
[40] Liu S H, Neiger M 2003 J. Phys. D:Appl. Phys. 36 3144
[41] Bruggeman P J, Sadeghi N, Schram D C, Linss V 2014 Plasma Sources Sci. Technol. 23 023001
[42] Yang F X, Mu Z X, Zhang J L 2016 Plasma Sci. Technol. 18 79
[43] Zhu X M, Pu Y K 2008 Plasma Sources Sci. Technol. 17 024002
Metrics
- Abstract views: 74
- PDF Downloads: 3
- Cited By: 0