-
Secondary hardening ultra-high-strength steel is widely utilized in aerospace and other advanced engineering applications, with the nanoscale M2C precipitates serving as the primary strengthening factor. Mo plays a crucial role in the formation of the Mo2C secondary hardening phase, which can form composite M2C precipitates with elements such as Cr, V, and W, thereby modifying the composition and properties of Mo2C. To investigate the effects of V and W doping on Mo2C, this study employs first-principles calculations to analyze the formation enthalpy, electronic structure, and mechanical properties of the doped systems. The CASTEP module is utilized in this study, with the Perdew-Burke-Ernzerhof (PBE) functional adopted within the generalized gradient approximation (GGA) framework. The results indicate that V doping reduces the lattice parameters and decreases the formation enthalpy, thereby enhancing structural stability. In contrast, W doping increases the lattice parameters and lowers the formation enthalpy but leads to reduced structural stability. In terms of mechanical properties, V doping decreases toughness while increasing hardness, whereas W doping improves the strength-toughness balance by mitigating the rate of hardness reduction. Covalent bonds are formed within the system, with V and W doping altering their characteristics: compared to the C-Mo bond, the C-V bond exhibits weaker covalency, while the C-W bond displays stronger covalency. Additionally, V doping enhances the stability of Mo-C bonds, whereas W doping reduces their stability. Charge population analysis reveals that metal atoms (Mo, V, and W) act as electron donors, while carbon atoms act as electron acceptors.
-
Keywords:
- first-principles /
- M2C /
- elastic properties /
- electronic structure
-
[1] Dahl J M, Novotny P M 1999Adv. Mater. Processes. 155 23
[2] Speich G R, Leslie W C 1972Metall. Trans. 3 1043
[3] Garrison W M, Maloney J L 2005Mater. Sci. Eng. A 403 299
[4] Wu D 2016Ph. D. Dissertation (Qinhuangdao: Yanshan University) (in Chinese) [吴迪2016博士学位论文(秦皇岛:燕山大学)]
[5] Li A N, Li Y, Wang C X, Liu X M 2007Iron Steel 42 60(in Chinese) [李阿妮,厉勇,王春旭,刘宪民2007钢铁42 60]
[6] Wang C X, Zhang P J, Gao Y H, Li Y, Han S, Liu S Z 2020Heat Treat. Met. 45 7(in Chinese) [王春旭,张鹏杰,高远航,厉勇,韩顺,刘少尊2020金属热处理45 7]
[7] Kwon H 1991Metall. Trans. A 22 1119
[8] Kwon H, Lee K B, Yang H R, Lee J B, Kim Y S 1997Metall. Mater. Trans. A 28 775
[9] Lee K B, Yang H R, Kwon H 2001Metall. Mater. Trans. A 32 1862
[10] Lee K B, Yang H R, Kwon H 2001Metall. Mater. Trans. A 32 1659
[11] Speich G R, Dabkowski D S, Porter L F 1973Metall. Trans. 4 303
[12] Liu X T, Zhou X L, Yang M S 2023J. Mater. Sci. Mater. Electron. 34 961
[13] Liu H L, Zhu J C, Lai Z H, Zhao R D, He D 2009Scr. Mater. 60 949
[14] Wang X R, Yan M F 2009J Wuhan Univ Technol-Mater. Sci. Ed. 24 37
[15] Wang X R, Yan M F, Chen H T 2009J. Mater. Sci. Technol. 25 419
[16] Liu Y Z, Jiang Y H, Zhou R, Liu X F, Feng J 2015Ceram. Int. 41 5239
[17] Vanderbilt D 1990Phys. Rev. B. 41 7892
[18] Perdew J P, Burke K, Ernzerhof M 1996Phys. Rev. lett. 77 3865
[19] Guo J, Feng Y L, Tang C, Wang L, Qing X L, Yang Q X, Ren X J 2022Materials 15 4719
[20] Abderrahim F Z, Faraoun H I, Ouahrani T 2012Physica B 407 3833
[21] Luo Y, Cheng C, Chen H J, Liu K, Zhou X L 2019J. Phys.: Condens. Matter 31 405703
[22] Peng M J, Wang R F, Wu Y J, Yang A C, Duan Y H 2022Vacuum 196 110715
[23] Zhao R D, Wu F F, Liu X, Zhu J C, Zhao Z F 2016J. Alloys Compd. 681 283
[24] Wu M M, Wen L, Tang B Y, Peng L M, Ding W J 2010J. Alloys Compd. 506 412
[25] Jang J H, Lee C H, Heo Y U, Suh D W 2012Acta Mater. 60 208
[26] Yan M, Zhang H, Gong C, Zhang M, Gao Q 2025J. Phys. Chem. Solids 196 112374
[27] Boucetta S, Zegrar F 2013J. Magnes. Alloys. 1 128
[28] Gao X P, Jiang Y H, Zhou R, Feng J 2014J. Alloys Compd. 587 819
[29] Li S M, Zhang Q F, Qiu X P, Zhang Z Y, Zhong H F 2022Mater. Prot. 55 9(in Chinese) [李士明,张启富,邱肖盼,张子月,仲海峰2022材料保护55 9]
[30] Chen X Q, Niu H, Li D, Li Y 2011Intermetallics 19 1275
[31] Tian Y J, Xu B, Zhao Z S 2012Int. J. Refract. Met. Hard Mater. 33 93
[32] Teter DM 1998MRS Bull. 23 22
[33] Haines J, Leger J M, Bocquillon G 2001Annu. Rev. Mater. Res. 31 1
[34] Lu C B, Li X M 2021Sci. Techno. Eng. 21 10646(in Chinese) [卢彩彬,李新梅2021科学技术与工程21 10646]
[35] Li Y F, Gao Y M, Fan Z J, Xiao B, Yue Q W, Min T, Ma S Q 2010Phys. B: Condens. Matter. 405 1011
Metrics
- Abstract views: 54
- PDF Downloads: 4
- Cited By: 0