-
Landau-Zener-Stückelberg-Majorana (LZSM) interference has significant application value in quantum state manipulation, extending quantum state lifetimes, and suppressing decoherence. Optical lattice clocks, with long coherence times, increases the likelihood of experimentally observing time-domain LZSM interference. While time-dominant Landau-Zener (LZ) Rabi oscillations have already been observed in optical lattice clock, the time-dominant LZSM interference sidebands in optical lattice clock remain unexplored. This paper is based on an 87Sr optical lattice clock. By periodically modulating the frequency of the 698 nm clock laser and optimizing the parameters of the optical clock system, LZ transitions were achieved under the fast-passage limit (FPL). During the clock detection, two acoustic optical modulators (AOMs) were employed: AOM1 compensates for the frequency drift of the clock laser and operates continuously throughout the experiment, while AOM2 performs conventional clock transition detection and generates a cosine modulation signal using an external trigger from the RF signal generator in Burst mode. Ultimately, the periodically modulated 698nm clock laser with frequency of $\omega(t)=\cos \left[\int\left(\omega_p-A \omega_s \cos \omega_s t\right) d t\right]$ is used to probe atoms, and the Hamiltonian is $\hat{H}_{\vec{n}}(t)=\frac{h}{2}\left[\delta+A \omega_s \cos \left(\omega_s t\right)\right] \hat{\sigma}_z+\frac{h g_{\vec{n}}}{2} \hat{\sigma}_x$. As the modulated laser interacts with the atoms, exhibiting interference phenomena in the time domain, adjusting the clock laser detuning allows for probing the time-domain LZSM interference sideband spectra at different detection times. The results show that the time-domain LZSM interference sideband consists of multiple sidebands. Specifically, ±kth order sidebands can be observed at δ/ωs=k, where k is an integer, indicating that constructive interference. Additionally, the excitation fraction of different sidebands varies due to the differing LZ Rabi oscillation periods for each sideband, leading to different excitation fraction for the sidebands at the same clock detection time. Scanning the frequency of the clock laser, when detection time is an integer period, small interference peaks appear next to the +1st, +4th, +5th, +6th, -3th and -4th order sidebands. These peaks all appear on the right side of the sidebands, breaking the symmetry of LZSM interference sidebands. In contrast, when the detection time is a half-integer period, the interference sidebands exhibit symmetric distribution. This phenomenon mainly arises from the effective dynamical phase accumulated during the LZSM interference evolution. Moreover, the excitation fraction is higher than that at half-integer, which holds potential application value in state preparation research. The experimental results are in excellent agreement with theoretical simulations, confirming the feasibility of conducting time-domain LZSM interference studies on the optical lattice clock. In the future, by further suppressing clock laser noise, the optical lattice clock will provide an ideal experimental platform for studying the effects of noise on LZ transition.
-
Keywords:
- Landau-Zener transition /
- Time-dominant Landau-Zener-Stü /
- ckelberg-Majorana interference /
- Optical lattice clock
-
[1] Landau L D 1932Phys. Z. Sowjetunion 2 46.
[2] Zener C 1932Proc. R. Soc. A 137 696.
[3] Stückelberg E C G 1932Helv. Phys. Acta 5 369.
[4] Majorana E 1932Nuovo Cimento 9 43.
[5] Xu K B, Xie T Y, Shi F Z, Wang Z Y, Xu X K, Wang P F, Wang Y, Plenio M B, Du J F 2019b Sci. Adv. 5 eaax3800.
[6] Fuchs G D, Burkard G, Klimov P V, Awschalom D D 2011Nat. Phys. 7 789.
[7] Thalhammer G, Winkler K, Lang F, Schmid S, Grimm R, Denschlag J H 2006Phys. Rev. Lett. 96 050402.
[8] Zenesini A, Lignier H, Tayebirad G, Radogostowicz J, Ciampini D, Mannella R, Wimberger S, Morsch O, Arimondo E 2009Phys. Rev. Lett. 103 090403.
[9] Tayebirad G, Zenesini A, Ciampini D, Mannella R, Morsch O, Arimondo E, Lörch N, Wimberger S 2010Phys. Rev. A 82 013633.
[10] Uehlinger T, Greif D, Jotzu G, Tarruell L, Esslinger T, Wang L, Troyer M 2013 Eur. Phys. J. Spec. Top. 217 121.
[11] Teranishi Y, Nakamura H 1998Phys. Rev. Lett. 81 2032.
[12] Saito K, Kayanuma Y 2004Phys. Rev. B 70 201304(R).
[13] Gaudreau L, Granger G, Kam A, Aers G C, Studenikin S A, Zawadzki P, Pioro-Ladrière M, Wasilewski Z R, Sachrajda A S 2012Nat. Phys. 8 54.
[14] Cao G, Li H O, Tu T, Wang L, Zhou C, Xiao M, Guo G C, Jiang H W, Guo G P, 2013Nat. Commun. 4 1401.
[15] Gaitan F 2003Phys. Rev. A 68 052314.
[16] Tan W, Liu W X, Chen Y X, Zhou C H, Zhao G D, Chang H, Wang T 2024 arXiv:2408.09922[Optics]
[17] Liu W X, Wang T, Zhang X F, Li W D 2021Phys. Rev. A 104 053318.
[18] Shevchenko S N, Ashhab S, Nori F 2010Phys. Rep. 492 1.
[19] Sen A, Sen D, Sengupta K 2021J. Phys.: Condens. Matter 33 443003.
[20] Liu H Y, Dai M C, Wei L F 2019Phys. Rev. A. 99 013820.
[21] Zhou J W, Huang P, Zhang Q, Wang Z X, Tan T, Xu X K, Shi F Z, Rong X, Ashhab S, Du J F 2014Phys. Rev. Lett. 112 010503.
[22] Aeppli A, Kim K, Warfield W, Safronova M S, Ye J 2024Phys. Rev. Lett. 133023401.
[23] Boyd M M, Zelevinsky T, Ludlow A D, Foreman S M, Blatt S, Ido T, Ye J 2006Science 314 1430.
[24] Bloom B, Nicholson T L, Williams J, Campbell S, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014Nature 506 71.
[25] Guo F, Tan W, Zhou C H, Xia J, Chen Y X, Liang T, Liu Q, Liu Y, He D J, Zhou Y Z, Wang W H, Shen Y, Zou H X, Chang H 2021AIP Adv. 11 125116.
[26] Yin M J, Wang T, Lu X T, Li T, Wang Y B, Zhang X F, Li W D, Smerzi A, Chang H 2021Chin. Phys. Lett. 38 073201.
[27] Blatt S, Thosen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M, Ye J 2009Phys. Rev. A 80 052703.
Metrics
- Abstract views: 96
- PDF Downloads: 5
- Cited By: 0