搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于原位成像技术的同步频率比对与密度频移测量

胡小华 卢晓同 张晓斐 常宏

引用本文:
Citation:

基于原位成像技术的同步频率比对与密度频移测量

胡小华, 卢晓同, 张晓斐, 常宏

Density shift measurement and synchronous frequency comparison based on in situ imaging technique

Hu Xiao-Hua, Lu Xiao-Tong, Zhang Xiao-Fei, Chang Hong
PDF
HTML
导出引用
  • 精密测量囚禁在光晶格里面中性原子间相互作用导致的密度频移在研究多体相互作用和实现高性能光晶格钟等方面有着重要应用. 本文利用基于原位成像的同步频率比对技术对光晶格钟的密度频移系数进行了准确的测量. 光晶格里面的原子被一束钟激光同时激发, 并通过原位成像技术同时且独立地探测光晶格里11个不相关区域的钟跃迁概率. 由于不相关区域里的原子被同时激发, 即共模抑制了钟激光的噪声, 因此它们间的频率比对稳定度超越了Dick噪声的限制, 并与原子探测噪声极限相符合. 得益于光晶格里非均匀的原子数分布和可以忽略的外场梯度, 不相关区域间的频率比对结果即为密度频移. 通过测量密度频移和格点平均原子数差的关系, 获得密度频移系数为–0.101(3) Hz/(atom·site), 经过103 s的测量时间, 系统平均密度频移的相对测量不确定度达到了1.5 × 10–17.
    Precision measurement of the density shift caused by the interaction among neutral atoms trapped in an optical lattice has important applications in the study of multi-body interaction and the realization of high-performance optical lattice clocks. The common methods of measuring the density are the self-comparison technique and frequency comparison between two optical lattice clocks. Both methods are based on the identical density shift coefficient and should interrelatedly operate the clock at high- and low-density state, respectively. The precision of self-comparison method is limited by the Dick effect. The synchronous frequency comparison between two optical lattice clocks can realize the precision beyond the Dick limit. However, both methods can only obtain the average density shift and ignore the fact that the magnitude of the density shift is different over the lattice sites as inhomogeneous density distribution in the lattice. In this paper, the synchronous frequency comparison technique based on in situ imaging is used to accurately measure the density shift coefficient of optical lattice clock. Atoms in the optical lattice are simultaneously and independently excited by the same clock laser beam, and the clock transition probability of 11 uncorrelated regions of the optical lattice is simultaneously detected by in situ imaging. Thus, the clock laser noise, which is the root cause of the Dick effect, is common-mode rejected as the frequency difference between uncorrelated regions is measured by the clock transition spectrum. Beyond the Dick-noise-limited stability, the stability of synchronous frequency comparison between uncorrelated regions is consistent with the limit resulting from the atom detection noise. Between the center and margin of the lattice, the differential shifts of the black-body radiation shift, lattice AC Stark shift, probe Stark shift, DC Stark shift, and quadratic Zeeman shift are all below 5 × 10–6 Hz, which is three orders of magnitude smaller than the density shift and can be ignored in this experiment. Benefitting from the inhomogeneous distribution of atom number and negligible external field gradient in the optical lattice, the compared frequency shift between uncorrelated regions indicates the density shift. By measuring the relationship between the density shift and atom difference, the density shift coefficient is determined as –0.101(3) Hz/atom/site (with a measurement time of 103 s), and the fractional measurement uncertainty of the mean density shift of our system is 1.5 × 10–17.
      通信作者: 卢晓同, luxiaotong@ntsc.ac.cn ; 常宏, changhong@ntsc.ac.cn
    • 基金项目: 中国科学院战略性先导研究项目(批准号: XDB35010202)和中国科学院前沿科学重点研究项目(批准号: ZDBS-LY-7016)资助的课题.
      Corresponding author: Lu Xiao-Tong, luxiaotong@ntsc.ac.cn ; Chang Hong, changhong@ntsc.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB35010202) and the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. ZDBS-LY-7016).
    [1]

    Schäfer F, Fukuhara T, Sugawa S, Takasu Y, Takahashi Y 2020 Nat. Rev. Phys. 2 411Google Scholar

    [2]

    McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87Google Scholar

    [3]

    Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye Jun, Kennedy C J 2019 Metrologia 56 065004Google Scholar

    [4]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185Google Scholar

    [5]

    Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H, Katori H 2020 Nat. Photon. 14 411Google Scholar

    [6]

    Lin Y G, Wang Q, Meng F, Cao S Y, Wang Y Z, Li Y, Sun Z, Lu B K, Yang T, Lin B K, Zhang A M, Fang F, Fang Z J 2021 Metrologia 58 035010Google Scholar

    [7]

    Liu H, Zhang X, Jiang K L, Wang J Q, Zhu Q, Xiong Z X, He L X, Lü B L. 2017 Chin. Phys. Lett. 34 20601Google Scholar

    [8]

    Luo L M, Qiao H, Ai D, Zhou M, Zhang S, Zhang S, Sun C Y, Qi Q C, Peng C Q, Jin T Y, Fang W, Yang Z Q, Li T C, Liang K, Xu X Y 2020 Metrologia 57 065017Google Scholar

    [9]

    Takano T, Takamoto M, Ushijima I, Ohmae N, Akatsuka T, Yamaguchi A, Kuroishi Y, Munekane H, Miyahara B, Katori H 2016 Nat. Photon. 10 662Google Scholar

    [10]

    Lemke N D, Stecher J V, Sherman J A, Rey A M, Oates C W, Ludlow A D 2011 Phys. Rev. Lett. 107 103902Google Scholar

    [11]

    Rey A M, Gorshkov A V, Kraus C V 2014 Ann. Phys. 340 311Google Scholar

    [12]

    Sang K L, Chang Y P, Won-Kyu L, Dai-Hyuk Y 2016 New J. Phys. 18 033030Google Scholar

    [13]

    Zhang X, Bishof M, Bromley S L, Kraus C V, Safronova M S, Zoller P, Rey A M, Ye J 2014 Science 345 1467Google Scholar

    [14]

    Goban A, Hutson R B, Marti G E, Campbell S L, Perlin M A, Julienne P S, Incao J P D, Rey A M, Ye J 2018 Nature 563 369Google Scholar

    [15]

    Zhou C H, Lu X T, Lu B Q, Wang Y B, Chang H 2021 Appl. Sci. 11 1206Google Scholar

    [16]

    Wang Q, Lin Y G, Meng F 2016 Chin. Phys. Lett. 33 103201Google Scholar

    [17]

    Nicholson T L, Martin M J, Williams J R, Bloom B J, Bishof M M, Swallows D, Campbell S L, Ye J 2012 Phys. Rev. Lett. 109 230801Google Scholar

    [18]

    Al-Masoudi A, Dörscher S, Häfner S, Sterr U, Lisdat C 2015 Phys. Rev. A 92 063814Google Scholar

    [19]

    Marti G E, Hutson R B, Goban A, Campbell S L, Poli N, Ye J 2018 Phys. Rev. Lett. 120 103201Google Scholar

    [20]

    Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A, Ye J 2022 Nature 602 420Google Scholar

    [21]

    Katori H, Takamoto M 2003 Phys. Rev. Lett. 91 173005Google Scholar

    [22]

    Xia J J, Lu X T, Chang H 2022 Chin. Phys. B 31 034209Google Scholar

    [23]

    Nagourney W, Sandberg I, Dehmelt H 1986 Phys. Rev. Lett. 56 2797Google Scholar

    [24]

    Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A, Phillips N B, Oates C W, Ludlow A D 2017 Nat. Photon. 11 48Google Scholar

    [25]

    Takamoto M, Takano T, Katori H 2011 Nat. Photon. 5 288Google Scholar

    [26]

    Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M, Ye J 2009 Phys. Rev. A 80 052703Google Scholar

    [27]

    Lodewyck J, Zawada M, Lorini L, Gurov M, Lemonde P 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 411Google Scholar

    [28]

    Xu Q F, Lu X T, Xia J J, Wang Y B, Chang H 2021 Appl. Phys. Lett. 119 101105Google Scholar

  • 图 1  实验装置. 晶格光(Elattice)沿水平方向入射, 平行于钟激光(Eclock)且垂直于重力和磁场B方向. 电子倍增电荷耦合器件(EMCCD, Andor-897U)用于对光晶格进行原位成像, 其探测方向与探测光(Eprobe)的夹角为60°. 本实验仅使用下图所示的8(行) × 11(列)的像素区域, 这11列从左到右分别被标记为S1S11. 图片中标注的z轴平行于晶格光和钟激光, x轴平行于重力方向

    Fig. 1.  Experimental system. The lattice light (Elattice) is incident horizontally, overlapped with the clock laser (Eclock) and perpendicular to the direction of the gravity and magnetic field B. The probe light (Eprobe) is incident horizontally and perpendicular to the lattice light. An electron multiplier charge-coupled device (EMCCD, ANDOR-897U) is used for in situ imaging of the optical lattice, and the angle between the detection direction and the probe light is 60°. This experiment only considers the imaging region of 8 (row) × 11 (column) as shown in the bottom figure. These 11 columns are labeled by S1S11 from left to right, respectively. The labeled z-axis is parallel to the lattice light and clock laser, and the x-axis is parallel to the gravity direction

    图 2  (a) 基于原位成像的同步频率比对稳定度. 黑色方点表示S1 (原子数N1 = 68)和S11(N2 = 81)间的同步频率比对稳定度(8.9 × 10–16 (τ/s)–0.5), 而蓝色圆点表示S1S5 (N1 = 809)和S7S11 (N2 = 917)两个不同区域间的同步频率对比稳定度(2.7 × 10–16 (τ/s)–0.5). 实线表示根据(1)式计算得到的探测噪声限制的稳定度, 红色虚线表示Dick噪声限制的稳定度(2 × 10–15 (τ/s)–0.5). 误差棒表示测量结果的1σ标准差. (b) 对应(a)图中频率比对区域的激发率散点图. P1P2分别表示两个独立区域S1 (或S1S5)和S11 (或S7S11)的激发率

    Fig. 2.  (a) Stabilities of the in situ synchronous frequency comparison. The black squares indicate the stability of the synchronous frequency comparison between S1 (atom number N1 = 68) and S11 (N2 = 81) (8.9 × 10–16 (τ/s)–0.5), and the blue dots are the stability (2.7 × 10–16 (τ/s)–0.5) of the synchronous frequency comparison between S1S5 (N1 = 809) and S7S11 (N2 = 917). The solid lines are the detection-noise-limited stability calculated by Eq. (1), and the red dotted line represents the Dick-noise-limited stability (2 × 10–15 (τ/s)–0.5). Error bars indicate 1 standard deviation. (b) Scatter plots of excitation fractions of the compared regions shown in (a). P1 and P2 represent the excitation fraction of S1 (or S1S5) and S11 (or S7S11), respectively.

    图 3  密度频移测量 (a) S1, S6S11区域的边带可分辨的钟跃迁谱线; (b) 原子数分布; (c) 密度频移与格点平均原子数差的关系. 红色实线为线性拟合(固定与y轴的截距为零), 橙色区域为拟合线的68%置信区间. 误差棒表示测量值的1σ标准差

    Fig. 3.  Measurements of density shift: (a) Sideband-resolved clock transition spectra obtained in S1, S6 and S11, respectively; (b) the distribution of the number of atoms; (c) density shift as a function of atom number difference (∆N). Red solid line shows the linear fitting (the intercept with the y-axis is fixed as zero), and the orange shade corresponds to 68% confidence intervals of the fitting line. Error bars indicate 1 standard deviation.

    Baidu
  • [1]

    Schäfer F, Fukuhara T, Sugawa S, Takasu Y, Takahashi Y 2020 Nat. Rev. Phys. 2 411Google Scholar

    [2]

    McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87Google Scholar

    [3]

    Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye Jun, Kennedy C J 2019 Metrologia 56 065004Google Scholar

    [4]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185Google Scholar

    [5]

    Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H, Katori H 2020 Nat. Photon. 14 411Google Scholar

    [6]

    Lin Y G, Wang Q, Meng F, Cao S Y, Wang Y Z, Li Y, Sun Z, Lu B K, Yang T, Lin B K, Zhang A M, Fang F, Fang Z J 2021 Metrologia 58 035010Google Scholar

    [7]

    Liu H, Zhang X, Jiang K L, Wang J Q, Zhu Q, Xiong Z X, He L X, Lü B L. 2017 Chin. Phys. Lett. 34 20601Google Scholar

    [8]

    Luo L M, Qiao H, Ai D, Zhou M, Zhang S, Zhang S, Sun C Y, Qi Q C, Peng C Q, Jin T Y, Fang W, Yang Z Q, Li T C, Liang K, Xu X Y 2020 Metrologia 57 065017Google Scholar

    [9]

    Takano T, Takamoto M, Ushijima I, Ohmae N, Akatsuka T, Yamaguchi A, Kuroishi Y, Munekane H, Miyahara B, Katori H 2016 Nat. Photon. 10 662Google Scholar

    [10]

    Lemke N D, Stecher J V, Sherman J A, Rey A M, Oates C W, Ludlow A D 2011 Phys. Rev. Lett. 107 103902Google Scholar

    [11]

    Rey A M, Gorshkov A V, Kraus C V 2014 Ann. Phys. 340 311Google Scholar

    [12]

    Sang K L, Chang Y P, Won-Kyu L, Dai-Hyuk Y 2016 New J. Phys. 18 033030Google Scholar

    [13]

    Zhang X, Bishof M, Bromley S L, Kraus C V, Safronova M S, Zoller P, Rey A M, Ye J 2014 Science 345 1467Google Scholar

    [14]

    Goban A, Hutson R B, Marti G E, Campbell S L, Perlin M A, Julienne P S, Incao J P D, Rey A M, Ye J 2018 Nature 563 369Google Scholar

    [15]

    Zhou C H, Lu X T, Lu B Q, Wang Y B, Chang H 2021 Appl. Sci. 11 1206Google Scholar

    [16]

    Wang Q, Lin Y G, Meng F 2016 Chin. Phys. Lett. 33 103201Google Scholar

    [17]

    Nicholson T L, Martin M J, Williams J R, Bloom B J, Bishof M M, Swallows D, Campbell S L, Ye J 2012 Phys. Rev. Lett. 109 230801Google Scholar

    [18]

    Al-Masoudi A, Dörscher S, Häfner S, Sterr U, Lisdat C 2015 Phys. Rev. A 92 063814Google Scholar

    [19]

    Marti G E, Hutson R B, Goban A, Campbell S L, Poli N, Ye J 2018 Phys. Rev. Lett. 120 103201Google Scholar

    [20]

    Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A, Ye J 2022 Nature 602 420Google Scholar

    [21]

    Katori H, Takamoto M 2003 Phys. Rev. Lett. 91 173005Google Scholar

    [22]

    Xia J J, Lu X T, Chang H 2022 Chin. Phys. B 31 034209Google Scholar

    [23]

    Nagourney W, Sandberg I, Dehmelt H 1986 Phys. Rev. Lett. 56 2797Google Scholar

    [24]

    Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A, Phillips N B, Oates C W, Ludlow A D 2017 Nat. Photon. 11 48Google Scholar

    [25]

    Takamoto M, Takano T, Katori H 2011 Nat. Photon. 5 288Google Scholar

    [26]

    Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M, Ye J 2009 Phys. Rev. A 80 052703Google Scholar

    [27]

    Lodewyck J, Zawada M, Lorini L, Gurov M, Lemonde P 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 411Google Scholar

    [28]

    Xu Q F, Lu X T, Xia J J, Wang Y B, Chang H 2021 Appl. Phys. Lett. 119 101105Google Scholar

  • [1] 余泽鑫, 刘琪鑫, 孙剑芳, 徐震. 基于二维磁光阱的增强型199Hg冷原子团制备.  , 2024, 73(1): 013701. doi: 10.7498/aps.73.20231243
    [2] 王良伟, 刘方德, 李云达, 韩伟, 孟增明, 张靖. 基于空间光调制器构建二维任意形状的87Rb原子阵列.  , 2023, 72(6): 064201. doi: 10.7498/aps.72.20222096
    [3] 李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏. 浅光晶格中量子隧穿现象的实验观测.  , 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [4] 张志强. 简谐与光晶格复合势阱中旋转二维玻色-爱因斯坦凝聚体中的涡旋链.  , 2022, 71(22): 220304. doi: 10.7498/aps.71.20221312
    [5] 文凯, 王良伟, 周方, 陈良超, 王鹏军, 孟增明, 张靖. 超冷87Rb原子在二维光晶格中Mott绝缘态的实验实现.  , 2020, 69(19): 193201. doi: 10.7498/aps.69.20200513
    [6] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发.  , 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [7] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量.  , 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [8] 李晓云, 孙博文, 许正倩, 陈静, 尹亚玲, 印建平. 基于调制光晶格的中性分子束光学Stark减速与囚禁的理论研究.  , 2018, 67(20): 203702. doi: 10.7498/aps.67.20181348
    [9] 林弋戈, 方占军. 锶原子光晶格钟.  , 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [10] 魏春华, 颜树华, 杨俊, 王国超, 贾爱爱, 罗玉昆, 胡青青. 基于87Rb原子的大失谐光晶格的设计与操控.  , 2017, 66(1): 010701. doi: 10.7498/aps.66.010701
    [11] 苟维, 刘亢亢, 付小虎, 赵儒臣, 孙剑芳, 徐震. 中性汞原子磁光阱装载率的优化.  , 2016, 65(13): 130201. doi: 10.7498/aps.65.130201
    [12] 田晓, 王叶兵, 卢本全, 刘辉, 徐琴芳, 任洁, 尹默娟, 孔德欢, 常宏, 张首刚. 锶玻色子的“魔术”波长光晶格装载实验研究.  , 2015, 64(13): 130601. doi: 10.7498/aps.64.130601
    [13] 李艳. 从光晶格中释放的超冷玻色气体密度-密度关联函数研究.  , 2014, 63(6): 066701. doi: 10.7498/aps.63.066701
    [14] 藤斐, 谢征微. 光晶格中双组分玻色-爱因斯坦凝聚系统的调制不稳定性.  , 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [15] 余学才, 汪平和, 张利勋. 光晶格动量依赖偶极势中原子运动.  , 2013, 62(14): 144202. doi: 10.7498/aps.62.144202
    [16] 徐志君, 刘夏吟. 光晶格中非相干超冷原子的密度关联效应.  , 2011, 60(12): 120305. doi: 10.7498/aps.60.120305
    [17] 张科智, 王建军, 刘国荣, 薛具奎. 两组分BECs在光晶格中的隧穿动力学及其周期调制效应.  , 2010, 59(5): 2952-2961. doi: 10.7498/aps.59.2952
    [18] 周骏, 任海东, 冯亚萍. 强非局域光晶格中空间孤子的脉动传播.  , 2010, 59(6): 3992-4000. doi: 10.7498/aps.59.3992
    [19] 黄劲松, 陈海峰, 谢征微. 光晶格中双组分偶极玻色-爱因斯坦凝聚体的调制不稳定性.  , 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [20] 徐志君, 程 成, 杨欢耸, 武 强, 熊宏伟. 三维光晶格中玻色凝聚气体基态波函数及干涉演化.  , 2004, 53(9): 2835-2842. doi: 10.7498/aps.53.2835
计量
  • 文章访问数:  3781
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-01
  • 修回日期:  2022-05-11
  • 上网日期:  2022-08-25
  • 刊出日期:  2022-09-05

/

返回文章
返回
Baidu
map