搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二维磁光阱的增强型199Hg冷原子团制备

余泽鑫 刘琪鑫 孙剑芳 徐震

引用本文:
Citation:

基于二维磁光阱的增强型199Hg冷原子团制备

余泽鑫, 刘琪鑫, 孙剑芳, 徐震

Enhanced production of 199Hg cold atoms based on two-dimensional magneto-optical trap

Yu Ze-Xin, Liu Qi-Xin, Sun Jian-Fang, Xu Zhen
PDF
HTML
导出引用
  • 在精密测量领域中, 高效地制备冷原子团具有重要的意义. 在光晶格钟里, 缩短冷原子团的制备时间可以降低Dick噪声, 从而提高光晶格钟的稳定性. 本文采用二维磁光阱加推送光的构型提高了三维磁光阱在超高真空环境中的装载率, 并通过压缩磁光阱技术降低了原子团温度, 实现了用于199Hg光晶格钟的增强型冷原子团制备. 实验上通过优化三维和二维磁光阱的失谐量和磁场梯度以及推送光的失谐量和功率等参数, 将三维磁光阱的199Hg冷原子装载率增强了51倍, 提升至3.1×105 s–1, 然后使用压缩磁光阱技术将199Hg冷原子团的温度降低至45 μK, 低于多普勒冷却理论温度. 这种基于二维磁光阱的增强型冷原子团制备可在超真空环境下实现对三维磁光阱装载率的高增益, 有效地缩短了冷原子团的制备时间, 同时也降低了原子团的温度, 有利于提高光晶格的转移效率, 为其他冷原子实验中冷汞原子团制备提供了有效方案.
    Efficient preparation of cold atoms plays an important role in realizing precision measurement including optical lattice clocks (OLCs). Fast preparation of cold atoms reduces Dick noise by shortening dead time in a clock interrogation cycle, which improves the stability of OLCs. Here, we increase the loading rate of the three-dimensional magneto-optical trap (3D-MOT) in the ultra-high vacuum environment by utilizing the two-dimensional magneto-optical trap (2D-MOT) with a push beam, reduce the temperature of cold atoms with the compression-MOT technique which is implemented by reducing the detuning of 3D-MOT rapidly at the end of atom preparation, and realize the enhanced production of cold atoms for 199Hg OLCs. To achieve 3D-MOT and 2D-MOT of mercury atoms, a deep ultraviolet laser (DUVL) system composed of three DUVLs is developed with one working in lower power for frequency locking and the other two in high power for laser cooling. Such a configuration improves the long-term frequency stability and shows greater robustness than our previous system consisting of two DUVLs. To maximize the 3D-MOT loading rate, we orderly optimize the detuning and the magnetic field gradient of 3D-MOT and those of 2D-MOT as well as the detuning and the power of the push beam. After all parameters are optimized, we measure the maximum loading rate of 3D-MOT to be 3.1×105 s–1 and prepare cold atoms of 1.8×106 in 9 s. The loading rate is greatly enhanced by a factor of 51 by using 2D-MOT and the push beam. In order to improve the efficiency of transferring cold atoms from 3D-MOT to optical lattice, we use compression-MOT technique to reduce the temperature of cold atoms and produce cold 199Hg atoms which are about 45 μK, lower than the expected temperature of Doppler cooling theory. By achieving the high gain of the 3D-MOT loading rate under the ultra-high vacuum and reducing the temperature of cold atoms, this enhanced preparation of cold atoms based on 2D-MOT effectively shortens the preparation time of cold atoms and improves the transfer efficiency of optical lattice, which provides a significant scheme for efficiently preparing cold mercury atoms in other experiments.
      通信作者: 徐震, xuzhen@siom.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11874371, 91436105, 12104474)、中国科学院战略性先导科技专项(批准号: XDB21030200)和上海市科技计划 (批准号: 22ZR1471000)资助的课题.
      Corresponding author: Xu Zhen, xuzhen@siom.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874371, 91436105, 12104474), the Strategic Pilot Science and Technology Project of the Chinese Academy of Science, China (Grant No. XDB21030200), and the Shanghai Science and Technology Program, China (Grant No. 22ZR1471000).
    [1]

    Gross C, Bloch I 2017 Science 357 995Google Scholar

    [2]

    Bloch I, Dalibard J, Nascimbène S 2012 Nat. Phys. 8 267Google Scholar

    [3]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [4]

    Zheng T A, Yang Y A, Wang S Z, Singh J T, Xiong Z X, Xia T, Lu Z T 2022 Phys. Rev. Lett. 129 083001Google Scholar

    [5]

    Zheng X, Dolde J, Lochab V, Merriman B N, Li H, Kolkowitz S 2022 Nature 602 425Google Scholar

    [6]

    Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A, Phillips N B, Oates C W, Ludlow A D 2017 Nat. Photonics 11 48Google Scholar

    [7]

    Al-Masoudi A, Dörscher S, Häfner S, Sterr U, Lisdat C 2015 Phys. Rev. A 92 063814Google Scholar

    [8]

    卢晓同, 常宏 2022 光学学报 42 0327004Google Scholar

    Lu X T, Chang H 2022 Acta Opt. Sin. 42 0327004Google Scholar

    [9]

    Phillips W D, Metcalf H 1982 Phys. Rev. Lett. 48 596Google Scholar

    [10]

    Dieckmann K, Spreeuw R J C, Weidemüller M, Walraven J T M 1998 Phys. Rev. A 58 3891Google Scholar

    [11]

    Reinaudi G, Osborn C B, Bega K, Zelevinsky T 2012 J. Opt. Soc. Am. B: Opt. Phys. 29 729Google Scholar

    [12]

    Jallageas A, Devenoges L, Petersen M, Morel J, Bernier L G, Schenker D, Thomann P, Südmeyer T 2018 Metrologia 55 366Google Scholar

    [13]

    Müller T, Wendrich T, Gilowski M, Jentsch C, Rasel E M, Ertmer W 2007 Phys. Rev. A 76 063611Google Scholar

    [14]

    Nosske I, Couturier L, Hu F, Tan C, Qiao C, Blume J, Jiang Y H, Chen P, Weidemüller M 2017 Phys. Rev. A 96 053415Google Scholar

    [15]

    Schreck F, Druten K V 2021 Nat. Phys. 17 1296Google Scholar

    [16]

    Guo C L, Cambier V, Calvert J, Favier M, Andia M, de Sarlo L, Bize S 2023 Phys. Rev. A 107 033116Google Scholar

    [17]

    Zhang Y, Liu Q X, Sun J F, Xu Z, Wang Y Z 2022 Chin. Phys. B 31 073701Google Scholar

    [18]

    李子亮, 师振莲, 王鹏军 2020 69 126701Google Scholar

    Li Z L, Shi Z L, Wang P J 2020 Acta Phys. Sin. 69 126701Google Scholar

    [19]

    Yang J L, Long Y, Gao W W, Jin L, Zuo Z C, Wang R Q 2018 Chin. Phys. Lett 35 033701Google Scholar

    [20]

    Park S J, Noh J, Mun J 2012 Opt. Commun. 285 3950Google Scholar

    [21]

    Barbiero M, Tarallo M G, Calonico D, Levi F, Lamporesi G, Ferrari G 2020 Phys. Rev. Appl. 13 014013Google Scholar

    [22]

    Li K, Zhang D F, Gao T Y, Peng S G, Jiang K J 2015 Phys. Rev. A 92 013419Google Scholar

    [23]

    Hachisu H, Miyagishi K, Porsev S G, Derevianko A, Ovsiannikov V D, Pal’chikov V G, Takamoto M, Katori H 2008 Phys. Rev. Lett. 100 053001Google Scholar

    [24]

    Angstmann E J, Dzuba V A, Flambaum V V 2004 Phys. Rev. A 70 014102Google Scholar

    [25]

    Chupp T E, Fierlinger P, Ramsey-Musolf M J, Singh J T 2019 Rev. Mod. Phys. 91 015001Google Scholar

    [26]

    Tyumenev R, Favier M, Bilicki S, Bookjans E, Le Targat R, Lodewyck J, Nicolodi D, Le Coq Y, Abgrall M, Guena J, De Sarlo L, Bize S 2016 New J. Phys. 18 113002Google Scholar

    [27]

    Yamanaka K, Ohmae N, Ushijima I, Takamoto M, Katori H 2015 Phys. Rev. Lett. 114 230801Google Scholar

    [28]

    McFerran J J, Yi L, Mejri S, Bize S 2010 Opt. Lett. 35 3078Google Scholar

    [29]

    刘琪鑫, 张晔, 孙剑芳, 徐震 2023 中国激光 50 0701003Google Scholar

    Liu Q X, Zhang Y, Sun J F, Xu Z 2023 Chin. J. Lasers 50 0701003Google Scholar

    [30]

    Liu H L, Yin S Q, Liu K K, Qian J, Xu Z, Hong T, Wang Y Z 2013 Chin. Phys. B 22 043701Google Scholar

    [31]

    苟维, 刘亢亢, 付小虎, 赵儒臣, 孙剑芳, 徐震 2016 65 130201Google Scholar

    Gou W, Liu K K, Fu X H, Zhao R C, Sun J F, Xu Z 2016 Acta Phys. Sin. 65 130201Google Scholar

    [32]

    Lavigne Q, Groh T, Stellmer S 2022 Phys. Rev. A 105 033106Google Scholar

    [33]

    吴长江, 阮军, 陈江, 张辉, 张首刚 2013 62 063201Google Scholar

    Wu C J, Ruan J, Chen J, Zhang H, Zhang S G 2013 Acta Phys. Sin. 62 063201Google Scholar

    [34]

    Jin S W, Gao J S, Chandrashekara K, Golzhauser C, Schoner J, Chomaz L 2023 Phys. Rev. A 108 023719Google Scholar

    [35]

    Dörscher S, Thobe A, Hundt B, Kochanke A, Le Targat R, Windpassinger P, Becker C, Sengstock K 2013 Rev. Sci. Instrum. 84 043109Google Scholar

    [36]

    Watson R S, McFerran J J 2021 J. Opt. Soc. Am. B: Opt. Phys. 38 36Google Scholar

    [37]

    Lett P D, Phillips W D, Rolston S L, Tanner C E, Watts R N, Westbrook C I 1989 J. Opt. Soc. Am. B: Opt. Phys 6 2084Google Scholar

    [38]

    Bjorkholm J E 1988 Phys. Rev. A 38 1599Google Scholar

    [39]

    Savard T A, O’Hara K M, Thomas J E 1997 Phys. Rev. A 56 R1095Google Scholar

    [40]

    Aldossary O M 2014 J. King Saud Univ. Sci. 26 29Google Scholar

    [41]

    Arpornthip T, Sackett C A, Hughes K J 2012 Phys. Rev. A 85 033420Google Scholar

  • 图 1  深紫外激光系统示意图. (DUVL, 深紫外激光器; AOM, 声光调制器; ECDL, 外腔半导体激光器; OPLL, 光学锁相环; SHG, 二次谐波产生; FMS, 调制频率光谱; FA, 光纤放大器; BS, 分束器; PD, 光电二极管; PMF, 保偏光纤; BBO, 偏硼酸钡晶体; QWP, 1/4波片)

    Fig. 1.  Diagram of deep ultraviolet laser system. (DUVL, deep-ultraviolet laser; AOM, acousto-optic modulator; ECDL, external cavity semiconductor laser; OPLL, optical phase-locked loop; SHG, second harmonic generation; FMS, frequency modulation spectroscopy; FA, fiber amplifier; BS, beam splitter; PD, photodiode; PMF, polarization-maintaining fiber; BBO, BaB2O4; QWP, quarter-wave plate).

    图 2  2D-MOT和3D-MOT的实验装置示意图(M, 反射镜; MH, 带孔反射镜; L, 透镜; QWP, 1/4波片; BW, 布儒斯特窗口; EMCCD, 电子倍增电荷耦合器件)

    Fig. 2.  Diagram of experimental setup for 2D-MOT and 3D-MOT (M, mirror; MH, mirror with a hole; L, lens; QWP, quarter-wave plate; BW, Brewster window; EMCCD, electron multiplying charge-coupled device).

    图 3  (a) 2 s内装载的原子数$ {{N}}_{\text{2s}} $随3D-MOT失谐量$ {{\varDelta }}_{\text{3D}} $与磁场梯度$ \partial{{B}}_{{z}}^{\text{3D}}/\partial{z} $的变化; (b) 2D-MOT横向冷却原子示意图; (c) 1 s内装载的原子数$ {{N}}_{\text{1s}} $随2D-MOT失谐量$ {{\varDelta }}_{\text{2D}} $与磁场梯度$ \partial{{B}}_{{z}}^{\text{2D}}/\partial{z} $的变化; (d) 1 s内装载的原子数$ {{N}}_{\text{1s}} $随推送光的失谐量$ {{\varDelta }}_{\text{push}} $与功率$ {{P}}_{\text{push}} $的变化

    Fig. 3.  (a) Atom number $ {{N}}_{\text{2s}} $ loaded in 2 s varying with detuning $ {{\varDelta }}_{\text{3D}} $ and magnetic gradient field $ \partial{{B}}_{{z}}^{\text{3D}}/\partial{z} $ of 3D-MOT; (b) sketch of 2D-MOT capture process in the transverse direction; (c) atom number $ {{N}}_{\text{1s}} $ loaded in 1 s changing with detuning $ {{\varDelta }}_{\text{2D}} $and magnetic gradient field $ \partial{{B}}_{{z}}^{\text{2D}}/\partial{z} $ of 2D-MOT; (d) atom number $ {{N}}_{\text{1s}} $ loaded in 1 s changing with detuning $ {{\varDelta }}_{\text{push}} $ and power $ {{P}}_{\text{push}} $ of push beam.

    图 4  199Hg在三种不同情况下的冷原子装载曲线, 其中误差棒长度代表标准差

    Fig. 4.  Cold atom loading curves of 199Hg in three different cases, where error bar denotes standard deviation.

    图 5  (a) 压缩磁光阱相关时序; (b) 在失谐量$ {\delta}_{\text{3D}}=-{ \varGamma } $时原子团半径随飞行时间的变化; (c) 原子团温度随失谐量$ {\delta}_{\text{3D}} $的变化; (d) 原子团半径随失谐量$ {\delta}_{\text{3D}} $的变化

    Fig. 5.  (a) Relevant time sequence of compressing MOT; (b) radius of cold atoms varying with flying time at detuning $ {\delta}_{\text{3D}} $ = $ -{ \varGamma } $; (c) temperature of cold atoms varying with detuning $ {\delta}_{\text{3D}} $; (d) radius of cold atoms varying with detuning $ {\delta}_{\text{3D}} $.

    Baidu
  • [1]

    Gross C, Bloch I 2017 Science 357 995Google Scholar

    [2]

    Bloch I, Dalibard J, Nascimbène S 2012 Nat. Phys. 8 267Google Scholar

    [3]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [4]

    Zheng T A, Yang Y A, Wang S Z, Singh J T, Xiong Z X, Xia T, Lu Z T 2022 Phys. Rev. Lett. 129 083001Google Scholar

    [5]

    Zheng X, Dolde J, Lochab V, Merriman B N, Li H, Kolkowitz S 2022 Nature 602 425Google Scholar

    [6]

    Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A, Phillips N B, Oates C W, Ludlow A D 2017 Nat. Photonics 11 48Google Scholar

    [7]

    Al-Masoudi A, Dörscher S, Häfner S, Sterr U, Lisdat C 2015 Phys. Rev. A 92 063814Google Scholar

    [8]

    卢晓同, 常宏 2022 光学学报 42 0327004Google Scholar

    Lu X T, Chang H 2022 Acta Opt. Sin. 42 0327004Google Scholar

    [9]

    Phillips W D, Metcalf H 1982 Phys. Rev. Lett. 48 596Google Scholar

    [10]

    Dieckmann K, Spreeuw R J C, Weidemüller M, Walraven J T M 1998 Phys. Rev. A 58 3891Google Scholar

    [11]

    Reinaudi G, Osborn C B, Bega K, Zelevinsky T 2012 J. Opt. Soc. Am. B: Opt. Phys. 29 729Google Scholar

    [12]

    Jallageas A, Devenoges L, Petersen M, Morel J, Bernier L G, Schenker D, Thomann P, Südmeyer T 2018 Metrologia 55 366Google Scholar

    [13]

    Müller T, Wendrich T, Gilowski M, Jentsch C, Rasel E M, Ertmer W 2007 Phys. Rev. A 76 063611Google Scholar

    [14]

    Nosske I, Couturier L, Hu F, Tan C, Qiao C, Blume J, Jiang Y H, Chen P, Weidemüller M 2017 Phys. Rev. A 96 053415Google Scholar

    [15]

    Schreck F, Druten K V 2021 Nat. Phys. 17 1296Google Scholar

    [16]

    Guo C L, Cambier V, Calvert J, Favier M, Andia M, de Sarlo L, Bize S 2023 Phys. Rev. A 107 033116Google Scholar

    [17]

    Zhang Y, Liu Q X, Sun J F, Xu Z, Wang Y Z 2022 Chin. Phys. B 31 073701Google Scholar

    [18]

    李子亮, 师振莲, 王鹏军 2020 69 126701Google Scholar

    Li Z L, Shi Z L, Wang P J 2020 Acta Phys. Sin. 69 126701Google Scholar

    [19]

    Yang J L, Long Y, Gao W W, Jin L, Zuo Z C, Wang R Q 2018 Chin. Phys. Lett 35 033701Google Scholar

    [20]

    Park S J, Noh J, Mun J 2012 Opt. Commun. 285 3950Google Scholar

    [21]

    Barbiero M, Tarallo M G, Calonico D, Levi F, Lamporesi G, Ferrari G 2020 Phys. Rev. Appl. 13 014013Google Scholar

    [22]

    Li K, Zhang D F, Gao T Y, Peng S G, Jiang K J 2015 Phys. Rev. A 92 013419Google Scholar

    [23]

    Hachisu H, Miyagishi K, Porsev S G, Derevianko A, Ovsiannikov V D, Pal’chikov V G, Takamoto M, Katori H 2008 Phys. Rev. Lett. 100 053001Google Scholar

    [24]

    Angstmann E J, Dzuba V A, Flambaum V V 2004 Phys. Rev. A 70 014102Google Scholar

    [25]

    Chupp T E, Fierlinger P, Ramsey-Musolf M J, Singh J T 2019 Rev. Mod. Phys. 91 015001Google Scholar

    [26]

    Tyumenev R, Favier M, Bilicki S, Bookjans E, Le Targat R, Lodewyck J, Nicolodi D, Le Coq Y, Abgrall M, Guena J, De Sarlo L, Bize S 2016 New J. Phys. 18 113002Google Scholar

    [27]

    Yamanaka K, Ohmae N, Ushijima I, Takamoto M, Katori H 2015 Phys. Rev. Lett. 114 230801Google Scholar

    [28]

    McFerran J J, Yi L, Mejri S, Bize S 2010 Opt. Lett. 35 3078Google Scholar

    [29]

    刘琪鑫, 张晔, 孙剑芳, 徐震 2023 中国激光 50 0701003Google Scholar

    Liu Q X, Zhang Y, Sun J F, Xu Z 2023 Chin. J. Lasers 50 0701003Google Scholar

    [30]

    Liu H L, Yin S Q, Liu K K, Qian J, Xu Z, Hong T, Wang Y Z 2013 Chin. Phys. B 22 043701Google Scholar

    [31]

    苟维, 刘亢亢, 付小虎, 赵儒臣, 孙剑芳, 徐震 2016 65 130201Google Scholar

    Gou W, Liu K K, Fu X H, Zhao R C, Sun J F, Xu Z 2016 Acta Phys. Sin. 65 130201Google Scholar

    [32]

    Lavigne Q, Groh T, Stellmer S 2022 Phys. Rev. A 105 033106Google Scholar

    [33]

    吴长江, 阮军, 陈江, 张辉, 张首刚 2013 62 063201Google Scholar

    Wu C J, Ruan J, Chen J, Zhang H, Zhang S G 2013 Acta Phys. Sin. 62 063201Google Scholar

    [34]

    Jin S W, Gao J S, Chandrashekara K, Golzhauser C, Schoner J, Chomaz L 2023 Phys. Rev. A 108 023719Google Scholar

    [35]

    Dörscher S, Thobe A, Hundt B, Kochanke A, Le Targat R, Windpassinger P, Becker C, Sengstock K 2013 Rev. Sci. Instrum. 84 043109Google Scholar

    [36]

    Watson R S, McFerran J J 2021 J. Opt. Soc. Am. B: Opt. Phys. 38 36Google Scholar

    [37]

    Lett P D, Phillips W D, Rolston S L, Tanner C E, Watts R N, Westbrook C I 1989 J. Opt. Soc. Am. B: Opt. Phys 6 2084Google Scholar

    [38]

    Bjorkholm J E 1988 Phys. Rev. A 38 1599Google Scholar

    [39]

    Savard T A, O’Hara K M, Thomas J E 1997 Phys. Rev. A 56 R1095Google Scholar

    [40]

    Aldossary O M 2014 J. King Saud Univ. Sci. 26 29Google Scholar

    [41]

    Arpornthip T, Sackett C A, Hughes K J 2012 Phys. Rev. A 85 033420Google Scholar

  • [1] 朱宇豪, 李瑞. 基于组态相互作用方法对AuB分子低激发态电子结构和光学跃迁性质的研究.  , 2024, 73(5): 053101. doi: 10.7498/aps.73.20231347
    [2] 冯卓, 索兵兵, 韩慧仙, 李安阳. CaSH分子高精度电子结构计算及用于激光制冷目标分子的理论分析.  , 2024, 73(2): 023301. doi: 10.7498/aps.73.20230742
    [3] 胡小华, 卢晓同, 张晓斐, 常宏. 基于原位成像技术的同步频率比对与密度频移测量.  , 2022, 71(17): 173401. doi: 10.7498/aps.71.20220600
    [4] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl-阴离子的光谱性质和跃迁性质.  , 2021, (): . doi: 10.7498/aps.70.20211688
    [5] 尹俊豪, 杨涛, 印建平. 基于${{\bf{A}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Pi}} }}_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow }}{{\bf{X}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Sigma }}}}_{{\boldsymbol{1/2}}}$跃迁的CaH分子激光冷却光谱理论研究.  , 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [6] 李子亮, 师振莲, 王鹏军. 采用永磁铁的钠原子二维磁光阱的设计和研究.  , 2020, 69(12): 126701. doi: 10.7498/aps.69.20200266
    [7] 万明杰, 李松, 金成国, 罗华锋. 激光冷却SH阴离子的理论研究.  , 2019, 68(6): 063103. doi: 10.7498/aps.68.20182039
    [8] 万明杰, 罗华锋, 袁娣, 李松. 激光冷却KCl阴离子的理论研究.  , 2019, 68(17): 173102. doi: 10.7498/aps.68.20190869
    [9] 陈涛, 颜波. 极性分子的激光冷却及囚禁技术.  , 2019, 68(4): 043701. doi: 10.7498/aps.68.20181655
    [10] 林弋戈, 方占军. 锶原子光晶格钟.  , 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [11] 邢伟, 孙金锋, 施德恒, 朱遵略. AlH+离子5个-S态和10个态的光谱性质以及激光冷却的理论研究.  , 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [12] 陈良超, 孟增明, 王鹏军. 87Rb玻色-爱因斯坦凝聚体的快速实验制备.  , 2017, 66(8): 083701. doi: 10.7498/aps.66.083701
    [13] 张云光, 张华, 窦戈, 徐建刚. 激光冷却OH分子的理论研究.  , 2017, 66(23): 233101. doi: 10.7498/aps.66.233101
    [14] 苟维, 刘亢亢, 付小虎, 赵儒臣, 孙剑芳, 徐震. 中性汞原子磁光阱装载率的优化.  , 2016, 65(13): 130201. doi: 10.7498/aps.65.130201
    [15] 吴长江, 阮军, 陈江, 张辉, 张首刚. 应用于铯原子喷泉钟的二维磁光阱研制.  , 2013, 62(6): 063201. doi: 10.7498/aps.62.063201
    [16] 许忻平, 张海潮, 王育竹. 一种实现冷原子束聚集的微磁透镜新方案.  , 2012, 61(22): 223701. doi: 10.7498/aps.61.223701
    [17] 孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明. 利用激光冷却原子束测量氦原子精密光谱.  , 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [18] 张宝武, 张萍萍, 马艳, 李同保. 铬原子束横向一维激光冷却的蒙特卡罗方法仿真.  , 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [19] 张鹏飞, 许忻平, 张海潮, 周善钰, 王育竹. 紫外光诱导原子脱附技术在单腔磁阱装载中的应用.  , 2007, 56(6): 3205-3211. doi: 10.7498/aps.56.3205
    [20] 谢 旻, 凌 琳, 杨国建. 非简并Λ型三能级原子的速度选择相干布居俘获.  , 2005, 54(8): 3616-3621. doi: 10.7498/aps.54.3616
计量
  • 文章访问数:  2478
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-31
  • 修回日期:  2023-09-03
  • 上网日期:  2023-10-09
  • 刊出日期:  2024-01-05

/

返回文章
返回
Baidu
map