搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锶原子光晶格钟自旋极化谱线的探测

郭阳 尹默娟 徐琴芳 王叶兵 卢本全 任洁 赵芳婧 常宏

引用本文:
Citation:

锶原子光晶格钟自旋极化谱线的探测

郭阳, 尹默娟, 徐琴芳, 王叶兵, 卢本全, 任洁, 赵芳婧, 常宏

Interrogation of spin polarized clock transition in strontium optical lattice clock

Guo Yang, Yin Mo-Juan, Xu Qin-Fang, Wang Ye-Bing, Lu Ben-Quan, Ren Jie, Zhao Fang-Jing, Chang Hong
PDF
导出引用
  • 87Sr原子存在核自旋,在磁场作用下原子能级会分裂成不同塞曼子能级.通过光抽运对原子进行自旋极化,其自旋极化谱线的探测为锶光钟系统的闭环锁定提供精确的频率参考.本文对87Sr原子钟跃迁能级5s2 1S0m 5s5p 3P0中的mF=+9/2和mF=-9/2的塞曼磁子能级自旋极化谱线进行了探测.经过一级宽带冷却和二级窄线宽冷却与俘获后,锶冷原子温度为3.9 K,原子数目为3.5106.利用邻近魔术波长的813.426 nm半导体激光光源实现水平方向的一维光晶格装载.采用归一化探测方法用线宽为Hz量级的698 nm钟激光对1S03P0偶极禁戒跃迁进行探测,在150 ms的探测时间下获得线宽为6.7 Hz的钟跃迁简并谱.在磁光阱竖直方向施加一个300 mGs的偏置磁场获得塞曼分裂谱,并通过689 nm的圆偏振自旋极化光进行光抽运,最终在探测时间为150 ms时,获得左右旋极化谱线线宽分别为6.2 Hz和6.8 Hz.
    We demonstrate a spin-polarized clock transition spectrum of the 87Sr optical lattice clock. The clock transition 5s2 1S05s5p 3P0 of isotope 87Sr has a hyperfine structure due to non-zero nuclear spin, inducing ten -polarized transitions from each individual mF state under the condition of a bias magnetic field along the probing polarization axis. In this experiment, atoms are driven to a certain mF state by a circular-polarization pump light to maximize the atomic population, which is beneficial to the stability and uncertainty evaluation of the optical lattice clock. After two stages cooling and trapping, about 3.5106 atoms are trapped in the red magneto-optical trap with a temperature of 3.9 K. A grating-feedback external cavity diode laser with a tapered amplifier is used to build the optical lattice with a magic-wavelength of 813.426 nm. Both waists of the counter-propagating lattice beam along the horizontal direction are overlapped to form a one-dimensional (1D) optical lattice. The lifetime of the atoms trapped in the 1D optical lattice is 1600 ms. The clock laser at 698 nm is a grating-feedback diode laser, which is locked to an ultra-low expansion cavity by the Pound-Drever-Hall technique to stabilize the frequency and phase. As a result, the linewidth of clock laser is narrowed to Hz level. By the normalized shelving method, we obtain a resolved sideband spectrum of 87Sr 5s2 1S05s5p 3P0 transition. According to the spectrum, the lattice temperature along the longitudinal direction is approximately 4.2 K. After that a linewidth of 6.7 Hz of the degenerate clock transition is obtained at a probing time of 150 ms by utilizing a three-dimensional (3D) bias magnetic field, which is used to eliminate the stray magnetic fields. Then a small bias magnetic field of 300 mGs is applied along the polarization axis of the lattice light to achieve the spectrum of Zeeman magnetic sublevels of the clock transition. Furthermore, the mF=+9/2 and mF=-9/2 magnetic sublevels are picked to be respectively pumped by the +-polarized and --polarized light at 689 nm, a variable liquid crystal wave plate is employed to switch on both polarizations. Finally, the spin polarized clock transition spectrum is obtained at the interrogating pulse of 150 ms, and the linewidths of the mF=+9/2, mF=-9/2 magnetic sublevel transitions are 6.8 Hz and 6.2 Hz respectively.
      通信作者: 常宏, changhong@ntsc.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11474282,61775220)、中国科学院战略性先导科技专项(B类)(批准号:XDB21030700)和中国科学院前沿科学重点研究项目(批准号:QYZDB-SSW-JSC004)资助的课题.
      Corresponding author: Chang Hong, changhong@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474282, 61775220), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030700), and the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004).
    [1]

    Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T, Gao K 2016 Phys. Rev. Lett. 116 013001

    [2]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802

    [3]

    Zhou M, Xu X Y 2016 AAPPS Bulletin 26 10

    [4]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nature Photon. 9 185

    [5]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [6]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637

    [7]

    Bord C J 2005 Phil. Trans. R. Soc. A 363 2177

    [8]

    Dow J M, Neilan R, Rizos C 2009 J. Geod. 83 191

    [9]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [10]

    Maleki L Prestage J 2005 Metrologia 42 S145

    [11]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043

    [12]

    Will C M 2014 Living Rev. Relativity 17 4

    [13]

    Katori H, Hashiguchi K, Il'inova E Y, Ovsiannikov V D 2009 Phys. Rev. Lett. 103 153004

    [14]

    Campbell S L, Hutson R B, Martil G E, Goban A, Darkwah Oppong N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90

    [15]

    Falke S, Schnatz H, Vellore Winfred J S R, Middelmann T, Vogt S, Weyers S, Lipphardt B, Grosche G, Riehle F, Sterr U, Lisdat C 2011 Metrologia 48 399

    [16]

    Targat R L, Lorini L, Le Coq Y, Zawada M, Guena J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nago'rny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nat. Commun. 4 2109

    [17]

    Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C, Fang Z J 2015 Chin. Phys. Lett. 32 090601

    [18]

    Boyd M M 2007 Ph. D. Dissertation (Colorado: University of Colorado)

    [19]

    Tian X 2010 M. S. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [田晓 2010 硕士学位论文 (北京: 中国科学院大学)]

    [20]

    Mukaiyama T, Katori H, Ido T, Li Y, Kuwata-Gonokami M 2003 Phys. Rev. Lett. 90 113002

    [21]

    Xie Y L, Lu B Q, Liu H, Wang Y B, Chang H 2015 Acta Sin. Quan. Opt. 21 136 (in Chinese) [谢玉林, 卢本全, 刘辉, 王叶兵, 常宏 2015 量子光学学报 21 136]

    [22]

    Wang Q 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [王强 2016 博士学位论文 (北京: 清华大学)]

    [23]

    Tian X 2016 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [田晓 2016 博士学位论文 (北京: 中国科学院大学)]

    [24]

    Liu H, Yin M J, Kong D H, Xu Q F, Zhang S G, Chang H 2015 Appl. Phys. Lett. 107 151104

    [25]

    Zhang S 2016 Ph. D. Dissertation (Beijing: China Jiliang University) (in Chinese) [张枢 2016 博士学位论文 (北京: 中国计量大学)]

    [26]

    Xu Q F, Liu H, Lu B Q, Wang Y B, Yin M J, Kong D H, Ren J, Tian X, Chang H 2015 Chin. Opt. Lett. 13 100201

    [27]

    McDonald M, McGuyer B H, Iwata G Z, Zelevinsky T 2015 Phys. Rev. Lett. 114 023001

    [28]

    Boyd M M, Zelevinsky T, Ludlow A D, Blatt S, Zanon-Willette T, Foreman S M, Ye J 2007 Phys. Rev. A 76 022510

  • [1]

    Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T, Gao K 2016 Phys. Rev. Lett. 116 013001

    [2]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802

    [3]

    Zhou M, Xu X Y 2016 AAPPS Bulletin 26 10

    [4]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nature Photon. 9 185

    [5]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [6]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637

    [7]

    Bord C J 2005 Phil. Trans. R. Soc. A 363 2177

    [8]

    Dow J M, Neilan R, Rizos C 2009 J. Geod. 83 191

    [9]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [10]

    Maleki L Prestage J 2005 Metrologia 42 S145

    [11]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043

    [12]

    Will C M 2014 Living Rev. Relativity 17 4

    [13]

    Katori H, Hashiguchi K, Il'inova E Y, Ovsiannikov V D 2009 Phys. Rev. Lett. 103 153004

    [14]

    Campbell S L, Hutson R B, Martil G E, Goban A, Darkwah Oppong N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90

    [15]

    Falke S, Schnatz H, Vellore Winfred J S R, Middelmann T, Vogt S, Weyers S, Lipphardt B, Grosche G, Riehle F, Sterr U, Lisdat C 2011 Metrologia 48 399

    [16]

    Targat R L, Lorini L, Le Coq Y, Zawada M, Guena J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nago'rny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nat. Commun. 4 2109

    [17]

    Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C, Fang Z J 2015 Chin. Phys. Lett. 32 090601

    [18]

    Boyd M M 2007 Ph. D. Dissertation (Colorado: University of Colorado)

    [19]

    Tian X 2010 M. S. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [田晓 2010 硕士学位论文 (北京: 中国科学院大学)]

    [20]

    Mukaiyama T, Katori H, Ido T, Li Y, Kuwata-Gonokami M 2003 Phys. Rev. Lett. 90 113002

    [21]

    Xie Y L, Lu B Q, Liu H, Wang Y B, Chang H 2015 Acta Sin. Quan. Opt. 21 136 (in Chinese) [谢玉林, 卢本全, 刘辉, 王叶兵, 常宏 2015 量子光学学报 21 136]

    [22]

    Wang Q 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [王强 2016 博士学位论文 (北京: 清华大学)]

    [23]

    Tian X 2016 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [田晓 2016 博士学位论文 (北京: 中国科学院大学)]

    [24]

    Liu H, Yin M J, Kong D H, Xu Q F, Zhang S G, Chang H 2015 Appl. Phys. Lett. 107 151104

    [25]

    Zhang S 2016 Ph. D. Dissertation (Beijing: China Jiliang University) (in Chinese) [张枢 2016 博士学位论文 (北京: 中国计量大学)]

    [26]

    Xu Q F, Liu H, Lu B Q, Wang Y B, Yin M J, Kong D H, Ren J, Tian X, Chang H 2015 Chin. Opt. Lett. 13 100201

    [27]

    McDonald M, McGuyer B H, Iwata G Z, Zelevinsky T 2015 Phys. Rev. Lett. 114 023001

    [28]

    Boyd M M, Zelevinsky T, Ludlow A D, Blatt S, Zanon-Willette T, Foreman S M, Ye J 2007 Phys. Rev. A 76 022510

  • [1] 宋会杰, 董绍武, 王翔, 姜萌, 章宇, 郭栋, 张继海. 基于最优控制理论的国产光抽运小铯钟频率控制算法.  , 2024, 73(6): 060201. doi: 10.7498/aps.73.20231866
    [2] 魏远飞, 唐志明, 李承斌, 黄学人. Al+光钟态“幻零”波长的理论计算.  , 2024, 73(10): 103103. doi: 10.7498/aps.73.20240177
    [3] 刘云, 王文海, 贺德晶, 周勇壮, 沈咏, 邹宏新. 中国空间站冷原子光钟激光系统.  , 2023, 72(18): 184202. doi: 10.7498/aps.72.20230412
    [4] 王霞, 贾方石, 姚科, 颜君, 李冀光, 吴勇, 王建国. 类铝离子钟跃迁能级的超精细结构常数和朗德g因子.  , 2023, 72(22): 223101. doi: 10.7498/aps.72.20230940
    [5] 陈海军, 任元, 王华. Bessel型光晶格中自旋-轨道耦合极化激元凝聚的稳态结构.  , 2022, 71(5): 056701. doi: 10.7498/aps.71.20211949
    [6] 陈海军, 任元, 王华. Bessel型光晶格中自旋-轨道耦合极化激元凝聚的稳态结构研究.  , 2021, (): . doi: 10.7498/aps.70.20211949
    [7] 陈泽锐, 刘光存, 俞振华. 谐振子势阱中双费米原子光钟的碰撞频移.  , 2021, 70(18): 180602. doi: 10.7498/aps.70.20210243
    [8] 李婷, 卢晓同, 周驰华, 尹默娟, 王叶兵, 常宏. 利用钟跃迁谱线测量超稳光学参考腔的零温漂点.  , 2021, 70(7): 073701. doi: 10.7498/aps.70.20201721
    [9] 孔德欢, 郭峰, 李婷, 卢晓同, 王叶兵, 常宏. 可搬运锶光晶格钟系统不确定度的评估.  , 2021, 70(3): 030601. doi: 10.7498/aps.70.20201204
    [10] 管勇, 刘丹丹, 王心亮, 张辉, 施俊如, 白杨, 阮军, 张首刚. 绝热跃迁方法测量铯喷泉钟冷原子碰撞频移.  , 2020, 69(14): 140601. doi: 10.7498/aps.69.20191800
    [11] 李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟黑体辐射频移评估.  , 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [12] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量.  , 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [13] 赵芳婧, 高峰, 韩建新, 周驰华, 孟俊伟, 王叶兵, 郭阳, 张首刚, 常宏. 小型化锶光钟物理系统的研制.  , 2018, 67(5): 050601. doi: 10.7498/aps.67.20172584
    [14] 徐琴芳, 尹默娟, 孔德欢, 王叶兵, 卢本全, 郭阳, 常宏. 光梳主动滤波放大实现锶原子光钟二级冷却光源.  , 2018, 67(8): 080601. doi: 10.7498/aps.67.20172733
    [15] 林弋戈, 方占军. 锶原子光晶格钟.  , 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [16] 张曦, 刘慧, 姜坤良, 王进起, 熊转贤, 贺凌翔, 吕宝龙. 利用传输腔技术实现镱原子光钟光晶格场的频率稳定.  , 2017, 66(16): 164205. doi: 10.7498/aps.66.164205
    [17] 吴长江, 阮军, 陈江, 张辉, 张首刚. 应用于铯原子喷泉钟的二维磁光阱研制.  , 2013, 62(6): 063201. doi: 10.7498/aps.62.063201
    [18] 王叶兵, 陈洁, 田晓, 高峰, 常宏. 锶原子互组跃迁谱的实验研究.  , 2012, 61(2): 020601. doi: 10.7498/aps.61.020601
    [19] 高峰, 王叶兵, 田晓, 许朋, 常宏. 锶原子三重态谱线的观测及在光钟中的应用.  , 2012, 61(17): 173201. doi: 10.7498/aps.61.173201
    [20] 柯熙政, 吴振森. 原子钟噪声中的混沌现象及其统计特性.  , 1998, 47(9): 1436-1449. doi: 10.7498/aps.47.1436
计量
  • 文章访问数:  6913
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-28
  • 修回日期:  2018-02-01
  • 刊出日期:  2018-04-05

/

返回文章
返回
Baidu
map