搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用传输腔技术实现镱原子光钟光晶格场的频率稳定

张曦 刘慧 姜坤良 王进起 熊转贤 贺凌翔 吕宝龙

引用本文:
Citation:

利用传输腔技术实现镱原子光钟光晶格场的频率稳定

张曦, 刘慧, 姜坤良, 王进起, 熊转贤, 贺凌翔, 吕宝龙

Transfer cavity scheme for stabilization of lattice laser in ytterbium lattice clock

Zhang Xi, Liu Hui, Jiang Kun-Liang, Wang Jin-Qi, Xiong Zhuan-Xian, He Ling-Xiang, Lü Bao-Long
PDF
导出引用
  • 为了获得高稳定度和高精确度的原子光晶格钟,光晶格场的频率必须得到锁定,线宽必须控制到特定水平用来消除交流斯塔克频移.本文提出利用传输腔技术来实现对镱原子光钟的光晶格场的频率锁定和抑制频率长期漂移的锁定方案.首先,将一个殷钢材料的传输腔锁定在基于调制转移谱技术锁定的780 nm激光场上,再将759 nm的光晶格光场锁定在传输腔上.实验结果表明,光晶格光场的线宽可以锁定和控制在1 MHz以下.光晶格光场与锁定于氢钟的光梳拍频结果显示,光晶格光场的长期频率稳定度优于3.6×10-10,可以确保实现镱原子光钟的不确定度进入10-17.
    For high performance clock, optical lattice is introduced to generate periodic trap for capturing neutral atoms through weak interactions. However, the strong trapping potential can bring a large AC Stark frequency shift due to imbalance shifts for the upper and lower energy levels of the clock transition. Fortunately, it is possible to find a specific “magic” wavelength for the lattice light, at which the first-order net AC Stark shift equals zero. To achieve high stability and accuracy of a neutral atomic optical clock, the frequency of the lattice laser must be stabilized and controlled to a certain level around magic wavelength to reduce this shift.#br#In this paper, we report that the frequency of lattice laser is stabilized and linewidth is controlled below 1 MHz with transfer cavity scheme for ytterbium (Yb) clock. A confocal invar transfer cavity mounted in an aluminum chamber is locked through the Pound-Drever-Hall (PDH) method to a 780 nm diode laser stabilized with modulation transfer spectroscopy of rubidium D2 transition. It is then used as the locking reference for the lattice laser. This cavity has a free spectral range of 375 MHz, as well as fineness of 236 at 780 nm, and 341 at 759 nm. Because neither of the wavelengths of 759 nm and 780 nm is separated enough to use optical filter, they are coupled into the cavity with transmission and reflection way respectively, and the two PDH modulation frequencies are chosen differently to avoid possible interference.#br#The stabilization of the 759 nm lattice laser on transfer cavity can stay on for over 12 hours without escaping or mode hopping. To estimate the locking performance of the system, a beat note with a hydrogen maser-locked optical frequency comb is recorded through a frequency counter at 10 ms gate time for over 3 hours. This beat note shows that the frequency fluctuation is in a range of 10 kHz corresponding to a stability of 2×10-11 level with 0.1 s averaging time, but goes up to 150 kHz corresponding to a stability of 3.6×10-10 at 164 s averaging time. The long-term drift can be the result of air pressure fluctuation on the transfer cavity, or the bad stability of the optical comb in the measurement process. However, current locking performance is still enough for the requirement of 10-17 clock uncertainty.#br#In conclusion, we succeed in realizing frequency stabilization and control for the lattice laser of Yb clock with the transfer cavity scheme. The result shows that the short-term stability is around 10-11 level, though a mid-long-term drift exists. However, the stability of 3.6×10-10 over 164 s can still promise a 10-17 uncertainty for the Yb clock. And, it can be reduced if the averaging time is long enough. The work can be further improved by installing the transfer cavity into vacuum housing for better stability in future.
      通信作者: 贺凌翔, helx@wipm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61227805,11574352,91536104,91636215)和B类战略性先导科技专项(批准号:XDB21030700)资助的课题.
      Corresponding author: He Ling-Xiang, helx@wipm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61227805, 11574352, 91536104, 91636215) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030700).
    [1]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896

    [2]

    Bondarescu R, Schärer A, Lundgren A, Hetényi G, Houlié N, Jetzer P, Bondarescu M 2015 Geophys. J. Int. 202 1770

    [3]

    Derevianko A, Pospelov M 2014 Nat. Phys. 10 933

    [4]

    Arvanitaki A, Huang J, Tilburg K V 2015 Phys. Rev. D 91 015015

    [5]

    Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A, Phillips N B, Oates C W, Ludlow A D 2016 Nat. Photon. 11 48

    [6]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001

    [7]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [8]

    Beloy K, Hinkley N, Phillips N B, Sherman J A, Schioppo M, Lehman J, Feldman A, Hanssen L M, Oates C W, Ludlow A D 2014 Phys. Rev. Lett. 113 260801

    [9]

    Recommended values of standard frequencies for applications including the practical realization of the metre and secondary representations of the second, 171Yb neutral atom, 6s2 1S0-6s6p 3P0 unperturbed optical transition, CIPM 2004 Phys. Rev. A 69 021403

    [10]

    Takamoto M, Hong F L, Higashi R, Katori H 2005 Nature 435 03541

    [11]

    Barber Z W, Stalnaker J E, Lemke N D, Poli N, Oates C W, Fortier T M, Diddams S A, Hollberg L, Hoyt C W 2008 Phys. Rev. Lett. 100 103002

    [12]

    Alnis J, Matveev A, Kolachevsky N, Udem T, Hänsch T W 2008 Phys. Rev. A 77 053809

    [13]

    Jiang Y Y, Bi Z Y, Xu X Y, Ma L S 2008 Chin. Phys. B 17 2152

    [14]

    Nevsky A, Alighanbari S, Chen Q F, Ernsting I, Vasilyev S, Schiller S, Barwood G, Gill P, Poli N, Tino G M 2013 Opt. Lett. 38 4903

    [15]

    Bohlouli-Zanjani P, Afrousheh K, Martin J D 2006 Rev. Sci. Instrum. 77 093105

    [16]

    Riedle E, Ashworth S H, Farrell J T, Nesbitt D J 1994 Rev. Sci. Instrum. 65 42

    [17]

    Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635

  • [1]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896

    [2]

    Bondarescu R, Schärer A, Lundgren A, Hetényi G, Houlié N, Jetzer P, Bondarescu M 2015 Geophys. J. Int. 202 1770

    [3]

    Derevianko A, Pospelov M 2014 Nat. Phys. 10 933

    [4]

    Arvanitaki A, Huang J, Tilburg K V 2015 Phys. Rev. D 91 015015

    [5]

    Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A, Phillips N B, Oates C W, Ludlow A D 2016 Nat. Photon. 11 48

    [6]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001

    [7]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [8]

    Beloy K, Hinkley N, Phillips N B, Sherman J A, Schioppo M, Lehman J, Feldman A, Hanssen L M, Oates C W, Ludlow A D 2014 Phys. Rev. Lett. 113 260801

    [9]

    Recommended values of standard frequencies for applications including the practical realization of the metre and secondary representations of the second, 171Yb neutral atom, 6s2 1S0-6s6p 3P0 unperturbed optical transition, CIPM 2004 Phys. Rev. A 69 021403

    [10]

    Takamoto M, Hong F L, Higashi R, Katori H 2005 Nature 435 03541

    [11]

    Barber Z W, Stalnaker J E, Lemke N D, Poli N, Oates C W, Fortier T M, Diddams S A, Hollberg L, Hoyt C W 2008 Phys. Rev. Lett. 100 103002

    [12]

    Alnis J, Matveev A, Kolachevsky N, Udem T, Hänsch T W 2008 Phys. Rev. A 77 053809

    [13]

    Jiang Y Y, Bi Z Y, Xu X Y, Ma L S 2008 Chin. Phys. B 17 2152

    [14]

    Nevsky A, Alighanbari S, Chen Q F, Ernsting I, Vasilyev S, Schiller S, Barwood G, Gill P, Poli N, Tino G M 2013 Opt. Lett. 38 4903

    [15]

    Bohlouli-Zanjani P, Afrousheh K, Martin J D 2006 Rev. Sci. Instrum. 77 093105

    [16]

    Riedle E, Ashworth S H, Farrell J T, Nesbitt D J 1994 Rev. Sci. Instrum. 65 42

    [17]

    Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635

  • [1] 宋会杰, 董绍武, 王翔, 姜萌, 章宇, 郭栋, 张继海. 基于最优控制理论的国产光抽运小铯钟频率控制算法.  , 2024, 73(6): 060201. doi: 10.7498/aps.73.20231866
    [2] 谭辉, 曹睿, 李永强. 基于动力学平均场的光晶格超冷原子量子模拟.  , 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [3] 刘妮, 马硕, 梁九卿. 双腔双光力系统中的光非互易传输特性.  , 2023, 72(6): 060702. doi: 10.7498/aps.72.20222246
    [4] 何星, 田中州, 王帅, 杨平, 许冰. 基于角谱传播理论的衰荡腔光场传输模型及调腔评价准则研究.  , 2023, 72(1): 014205. doi: 10.7498/aps.72.20221530
    [5] 何星, 田中州, 王帅, 杨平, 许冰. 基于角谱传播理论的衰荡腔光场传输模型及调腔评价准则研究.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221530
    [6] 孔德欢, 郭峰, 李婷, 卢晓同, 王叶兵, 常宏. 可搬运锶光晶格钟系统不确定度的评估.  , 2021, 70(3): 030601. doi: 10.7498/aps.70.20201204
    [7] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量.  , 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [8] 李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟黑体辐射频移评估.  , 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [9] 徐琴芳, 尹默娟, 孔德欢, 王叶兵, 卢本全, 郭阳, 常宏. 光梳主动滤波放大实现锶原子光钟二级冷却光源.  , 2018, 67(8): 080601. doi: 10.7498/aps.67.20172733
    [10] 郭阳, 尹默娟, 徐琴芳, 王叶兵, 卢本全, 任洁, 赵芳婧, 常宏. 锶原子光晶格钟自旋极化谱线的探测.  , 2018, 67(7): 070601. doi: 10.7498/aps.67.20172759
    [11] 林弋戈, 方占军. 锶原子光晶格钟.  , 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [12] 姜海峰. 超稳光生微波源研究进展.  , 2018, 67(16): 160602. doi: 10.7498/aps.67.20180751
    [13] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定.  , 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [14] 阮军, 王叶兵, 常宏, 姜海峰, 刘涛, 董瑞芳, 张首刚. 时间频率基准装置的研制现状.  , 2015, 64(16): 160308. doi: 10.7498/aps.64.160308
    [15] 周博臻, 徐四六, 程正则. 光弹在库墨-高斯晶格中传输特性的研究.  , 2013, 62(8): 084210. doi: 10.7498/aps.62.084210
    [16] 杜润昌, 陈杰华, 刘朝阳, 顾思洪. CPT原子频标实验研究.  , 2009, 58(9): 6117-6121. doi: 10.7498/aps.58.6117
    [17] 戴宏毅, 陈平形, 梁林梅, 李承祖. 利用Λ型原子与光场的纠缠态传送腔场的奇偶相干态的叠加态.  , 2004, 53(2): 441-444. doi: 10.7498/aps.53.441
    [18] 程愿应, 王又青, 胡 进, 李家熔. 一种新颖的用于光腔模式及光束传输模拟的特征向量法.  , 2004, 53(8): 2576-2582. doi: 10.7498/aps.53.2576
    [19] 冯健, 王继锁, 高云峰, 詹明生. 光场及原子-光场耦合的非线性对腔内原子辐射谱的影响.  , 2001, 50(7): 1279-1283. doi: 10.7498/aps.50.1279
    [20] 段路明, 郭光灿. 晶格原子与光场相互作用体系的元激发——能级激元.  , 1997, 46(6): 1114-1117. doi: 10.7498/aps.46.1114
计量
  • 文章访问数:  6447
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-21
  • 修回日期:  2017-06-06
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map