Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A method of modulating spin-polarized states with high spatiotemporal resolution in alkali-metal atomic vapor cell

MA Donghui HE Xinxin HUA Zeyu LI Yanjun DONG Haifeng WEN Huanfei YASUHIRO Sugawara TANG Jun MA Zongmin LIU Jun

Citation:

A method of modulating spin-polarized states with high spatiotemporal resolution in alkali-metal atomic vapor cell

MA Donghui, HE Xinxin, HUA Zeyu, LI Yanjun, DONG Haifeng, WEN Huanfei, YASUHIRO Sugawara, TANG Jun, MA Zongmin, LIU Jun
cstr: 32037.14.aps.74.20241634
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • With the state-of-the-art quantum measurement devices, such as atomic clocks, atomic gyroscopes, and atomic magnetometers, as their central components, the spatiotemporal evolution of atomic spin polarization in the atomic vapor cell has a major effect on both increasing the bandwidth of magnetometer and improving the accuracy of magnetic gradient measurements. However, the major factor impeding the further improvement of the performance of quantum measurement instrument is the inherent static nature of the traditional intra-vapor cell segmentation imaging technique, which makes it challenging to achieve the real-time capture of the dynamic evolution of atomic spin states. In this work, we suggest a dynamic spin imaging method for alkali metal atomic vapor cells with real-time modification of atomic spin polarization states in order to overcome this technological difficulty. In particular, to ensure that the laser can precisely act on the alkali metal atoms in various regions in the vapor cell, we employ a complex beam array management system to modify the on/off state of the laser beams at various positions in the spatial dimension in real time. In the meantime, we generate laser fields with particular spatial distribution and frequency characteristics by using frequency modulation techniques in the time series to accurately regulate the on-off frequency of each laser beam in the beam array. These laser beams cause dynamic changes in the atomic spin polarization state by interacting with alkali metal atoms at various points in the vapor cell. Through precise adjustment of the laser properties, we can see and study the dynamic evolution of the atomic spin-polarization state in real time. According to the experimental data, the technology outperforms the traditional static spin imaging techniques by achieving an excellent temporal resolution of 355 frames per second and a spatial resolution of 95.9 micrometers. The effective use of this method enables us to monitor and evaluate the dynamic aspects of magnetic field distribution with unprecedented precision, also greatly enhance our understanding of the dynamic characteristics of atomic spin polarization.
      Corresponding author: MA Zongmin, mzmncit@163.com ; LIU Jun, liuj@nuc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFC2204104), the International Cooperation and Exchange Project of National Natural Science Foundation of China (Grant No. 62220106012), the Shanxi Outstanding Youth Fund, China (Grant No. 202103021221007), the Shanxi International Joint Laboratory of Quantum Sensing and Precision Measurement, China (Grant No. 202204041101015), and the Fundamental Research Program of Shanxi Province, China (Grant No. 202203021212502).
    [1]

    Albert M, Cates G, Driehuys B, Happer W, Saam B, Springer Jr, Wishnia A 1994 Nature 370 199Google Scholar

    [2]

    Chupp T, Hoare R, Walsworth R, Wu B 1994 Phys. Rev. Lett. 72 2363Google Scholar

    [3]

    Navon G, Song Y Q, Room T, Appelt S, Taylor R, Pines A 1996 Scienc 271 1848Google Scholar

    [4]

    Ishikawa K, Anraku Y, Takahashi Y, Yabuzaki T 1999 J. Opt. Soc. Am. B 16 31Google Scholar

    [5]

    郝传鹏 2022博士学位论文(合肥: 中国科学技术大学)

    Hao C P 2022 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [6]

    Savukov I, Romalis M 2005 Phys. Rev. Lett. 94 123001Google Scholar

    [7]

    Xu S J, Yashchuk V, Donaldson M, Rochester S, Budker D, Pines A 2006 PNAS 103 12668Google Scholar

    [8]

    Savukov I, Karaulanov T 2014 J. Magn. Reson. 249 49Google Scholar

    [9]

    Young A, Appelt S, Baranga A, Erickson C, Happer W 1997 Appl. Phys. Lett. 70 3081Google Scholar

    [10]

    Skalla J, Wackerle G, Mehring M 1997 Opt. Commun. 143 209Google Scholar

    [11]

    Skalla J, Wackerle G, Mehring M, Pines A 1997 Phys. Lett. A 226 69Google Scholar

    [12]

    Baranga A, Appelt S, Erickson C, Young A, Happer W 1998 Phys. Rev. A 58 2282Google Scholar

    [13]

    Giel D, Hinz G, Nettels D, Weis A 2000 Opt. Express 6 251Google Scholar

    [14]

    Savukov I 2015 J. Magn. Reson. 256 9Google Scholar

    [15]

    Ito Y, Sato D, Kamada K, Kobayashi T 2014 IEEE Trans. Magn. 50 4006903Google Scholar

    [16]

    Nishi K, Ito Y, Kobayashi T 2018 Opt. Express 26 1988Google Scholar

    [17]

    Johnson C, Schwindt P 2010 IEEE International Frequency Control Symposium Newport Beach, CA, USA, June 4–6, 2010 p371

    [18]

    Johnson C, Schwindt P, Weisend M 2010 Appl. Phys. Lett. 97 243703Google Scholar

    [19]

    Kominis I, Kornack T, Allred J, Romalis M 2003 Nature 422 596Google Scholar

    [20]

    Gusarov A, Levron D, Paperno E, Shuker R, Baranga A 2009 IEEE Trans. Magn. 45 4478Google Scholar

    [21]

    Kim K, Begus S, Xia H, Lee S, Jazbinsek V, Trontelj Z, Romalis M 2014 NeuroImage 89 143Google Scholar

    [22]

    Xia H, Baranga A, Hoffman D, Romalis M 2006 Appl. Phys. Lett. 89 211104Google Scholar

    [23]

    Mamishin Y, Ito Y, Kobayashi T 2017 IEEE Trans. Magn. 53 4001606Google Scholar

    [24]

    Dolgovskiy V, Fescenko I, Sekiguchi N, Colombo S, Lebedev V, Zhang J, Weis A 2016 Appl. Phys. Lett. 109 023505Google Scholar

    [25]

    Weis A, Colombo S, Dolgovskiy V, Grujic Z, Lebedev V, Zhang J 2017 J. Phys.: Conf. Ser. 793 012032Google Scholar

    [26]

    Taue S, Toyota Y, Fujimori K, Fukano H 2017 22nd Microoptics Conference Tokyo, Japan, November 19–22, 2017 p212

    [27]

    Dong H F, Chen J L, Li J M, Liu C, Li A X, Zhao N, Guo F Z 2019 J. Appl. Phys. 125 243904Google Scholar

    [28]

    曹益平, 苏显渝, 向立群 2002 激光杂志 23 16Google Scholar

    Cao Y P, Su X Y, Xiang L Q 2002 Laser J 23 16Google Scholar

    [29]

    Ding Z C, Yuan J, Long X 2018 Sensors 18 1401Google Scholar

    [30]

    Wyllie R 2012 Ph. D. Dissertation (Madison: University of Wisconsin-Madison

    [31]

    Dong H F, Yin L X, Li A X, Zhao N, Chen J L, Sun M J 2019 J. Appl. Phys. 125 023908Google Scholar

    [32]

    Mitsunaga T, Nayar S 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fort Collins, CO, USA, July 6–9, 1999 p374

  • 图 1  实验装置示意图

    Figure 1.  Schematic diagram of the experimental setup.

    图 2  (a) DMD加载图片示意图; (b)气室内光强时空分布示意图(一列镜子); (c)气室内光强时空分布示意图(两列镜子), 其中d为空间周期, B为磁场强度, ${{2{\text{π}}}}/{{{\omega _1}}}$和${{2{\text{π}}}}/{{{\omega _2}}}$为时间周期, 本实验中B ≈ 1427 nT, ${{2{\text{π}}}}/{{{\omega _1}}} = 200\;{\text{μs}}$, ${{2{\text{π}}}}/{{{\omega _2}}} = 400\;{\text{μs}}$

    Figure 2.  (a) Schematic of DMD loading images; (b) schematic of spatiotemporal distribution of light intensity inside the vapor cell (one column of mirrors); (c) schematic of spatial-temporal distribution of light intensity inside the vapor cell (two columns of mirrors), d represents spatial periodicity; B represents magnetic field intensity, ${{2{\text{π}}}}/{{{\omega _1}}}$, ${{2{\text{π}}}}/{{{\omega _2}}}$ represent time period, in this experiment B ≈ 1427 nT, ${{2{\text{π}}}}/{{{\omega _1}}} = 200\;{\text{μs}}$, ${{2{\text{π}}}}/{{{\omega _2}}} = 400\;{\text{μs}}$.

    图 3  碱金属原子的自旋进动示意图

    Figure 3.  Schematic diagram illustrating the advance process of spin in alkali metal atoms.

    图 4  真实亮度的对数($\ln (Et)$)与灰度值百分比之间的函数关系

    Figure 4.  Logarithm of true luminance ($\ln (Et)$) as a function of percent gray value.

    图 5  调制光场时需加载入DMD的图片 (a)字符大小对应于7列镜子宽度的二进制图片; (b)字符粗细增加, 字符大小对应于15列镜子宽度的二进制图片; (c)字符粗细再次增大, 字符大小对应于23列镜子宽度的二进制图片

    Figure 5.  Pictures to be loaded into the DMD when modulating the light field: (a) The character size corresponds to a binary picture of 7 column mirror widths; (b) the character thickness increases, the character size corresponds to a binary picture of 15 column mirror widths; (c) the character thickness increases again, the character size corresponds to a binary picture of 23 column mirror widths.

    图 6  原子气室中自旋极化的二维成像 (a)未加磁场得到的背景图即激光光场直接成像; (b)加入磁场后的原子自旋极化图; (c)原子自旋极化图像减去激光光场成像的结果

    Figure 6.  Two-dimensional imaging of spin polarization in an atomic vapor cell: (a) The background image obtained without applying a magnetic field, namely, the direct imaging of the laser light field; (b) the atomic spin polarization image after applying a magnetic field; (c) the result of subtracting the laser light field imaging from the atomic spin polarization image.

    图 7  极化原子动态成像图 (a)—(c)字符大小不断增大的原子自旋极化图, 图(a)中条纹的线宽对应7个柱状微镜, 宽度为95.9 μm

    Figure 7.  Two-dimensional spin diagrams of atomic vapor cell: (a)–(c) Atomic spin polarization with increasing character sizes, the line width of the stripes in the panel (a) corresponds to 7 columnar micromirrors with a width of 95.9 μm.

    图 8  不同帧率下原子极化图 (a) 30 fps; (b) 150 fps; (c) 355 fps

    Figure 8.  Atomic polarization plots at different frame rates: (a) 30 fps; (b) 150 fps; (c) 355 fps.

    图 9  (a) 相机帧率在30—385 fps时直线A上像素值极差变化; (b)帧率分别在345, 355, 365, 375, 385 fps时直线A上像素值变化曲线图

    Figure 9.  (a) Variation of pixel value extremes on line A at camera frame rates from 30 fps to 385 fps; (b) graph of pixel value changes on line A at frame rates of 345, 355, 365, 375, and 385 fps respectively.

    图 10  气室内高质量原子动态自旋成像图, 蚂蚁内部黑色部分为原子低极化态区域, 外部为高极化态区域, 自旋成像图分别展示了在帧率为355 fps时, 不同时间下的蚂蚁运动轨迹

    Figure 10.  Dynamic spin-imaging maps of atoms inside the vapor cell. The black part inside the ants is the region of low-polarized state of atoms, the outside is the region of high-polarized state, and the spin-imaging maps show the ants’ motion trajectories at different times at a frame rate of 355 fps, respectively.

    Baidu
  • [1]

    Albert M, Cates G, Driehuys B, Happer W, Saam B, Springer Jr, Wishnia A 1994 Nature 370 199Google Scholar

    [2]

    Chupp T, Hoare R, Walsworth R, Wu B 1994 Phys. Rev. Lett. 72 2363Google Scholar

    [3]

    Navon G, Song Y Q, Room T, Appelt S, Taylor R, Pines A 1996 Scienc 271 1848Google Scholar

    [4]

    Ishikawa K, Anraku Y, Takahashi Y, Yabuzaki T 1999 J. Opt. Soc. Am. B 16 31Google Scholar

    [5]

    郝传鹏 2022博士学位论文(合肥: 中国科学技术大学)

    Hao C P 2022 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [6]

    Savukov I, Romalis M 2005 Phys. Rev. Lett. 94 123001Google Scholar

    [7]

    Xu S J, Yashchuk V, Donaldson M, Rochester S, Budker D, Pines A 2006 PNAS 103 12668Google Scholar

    [8]

    Savukov I, Karaulanov T 2014 J. Magn. Reson. 249 49Google Scholar

    [9]

    Young A, Appelt S, Baranga A, Erickson C, Happer W 1997 Appl. Phys. Lett. 70 3081Google Scholar

    [10]

    Skalla J, Wackerle G, Mehring M 1997 Opt. Commun. 143 209Google Scholar

    [11]

    Skalla J, Wackerle G, Mehring M, Pines A 1997 Phys. Lett. A 226 69Google Scholar

    [12]

    Baranga A, Appelt S, Erickson C, Young A, Happer W 1998 Phys. Rev. A 58 2282Google Scholar

    [13]

    Giel D, Hinz G, Nettels D, Weis A 2000 Opt. Express 6 251Google Scholar

    [14]

    Savukov I 2015 J. Magn. Reson. 256 9Google Scholar

    [15]

    Ito Y, Sato D, Kamada K, Kobayashi T 2014 IEEE Trans. Magn. 50 4006903Google Scholar

    [16]

    Nishi K, Ito Y, Kobayashi T 2018 Opt. Express 26 1988Google Scholar

    [17]

    Johnson C, Schwindt P 2010 IEEE International Frequency Control Symposium Newport Beach, CA, USA, June 4–6, 2010 p371

    [18]

    Johnson C, Schwindt P, Weisend M 2010 Appl. Phys. Lett. 97 243703Google Scholar

    [19]

    Kominis I, Kornack T, Allred J, Romalis M 2003 Nature 422 596Google Scholar

    [20]

    Gusarov A, Levron D, Paperno E, Shuker R, Baranga A 2009 IEEE Trans. Magn. 45 4478Google Scholar

    [21]

    Kim K, Begus S, Xia H, Lee S, Jazbinsek V, Trontelj Z, Romalis M 2014 NeuroImage 89 143Google Scholar

    [22]

    Xia H, Baranga A, Hoffman D, Romalis M 2006 Appl. Phys. Lett. 89 211104Google Scholar

    [23]

    Mamishin Y, Ito Y, Kobayashi T 2017 IEEE Trans. Magn. 53 4001606Google Scholar

    [24]

    Dolgovskiy V, Fescenko I, Sekiguchi N, Colombo S, Lebedev V, Zhang J, Weis A 2016 Appl. Phys. Lett. 109 023505Google Scholar

    [25]

    Weis A, Colombo S, Dolgovskiy V, Grujic Z, Lebedev V, Zhang J 2017 J. Phys.: Conf. Ser. 793 012032Google Scholar

    [26]

    Taue S, Toyota Y, Fujimori K, Fukano H 2017 22nd Microoptics Conference Tokyo, Japan, November 19–22, 2017 p212

    [27]

    Dong H F, Chen J L, Li J M, Liu C, Li A X, Zhao N, Guo F Z 2019 J. Appl. Phys. 125 243904Google Scholar

    [28]

    曹益平, 苏显渝, 向立群 2002 激光杂志 23 16Google Scholar

    Cao Y P, Su X Y, Xiang L Q 2002 Laser J 23 16Google Scholar

    [29]

    Ding Z C, Yuan J, Long X 2018 Sensors 18 1401Google Scholar

    [30]

    Wyllie R 2012 Ph. D. Dissertation (Madison: University of Wisconsin-Madison

    [31]

    Dong H F, Yin L X, Li A X, Zhao N, Chen J L, Sun M J 2019 J. Appl. Phys. 125 023908Google Scholar

    [32]

    Mitsunaga T, Nayar S 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fort Collins, CO, USA, July 6–9, 1999 p374

  • [1] Lin Yi, Wu Feng-Chuan, Mao Rui-Qi, Yao Jia-Wei, Liu Yi, An Qiang, Fu Yun-Qi. Development of three-port fiber-coupled vapor cell probe and its application in microwave digital communication. Acta Physica Sinica, 2022, 71(17): 170702. doi: 10.7498/aps.71.20220594
    [2] Wang He-Yan, Gao Yi-Fan, Liao Jia-Bao, Chen Jun-Cai, Li Yi-Lian, Wu Yi, Xu Guo-Liang, An Yi-Peng. Spin transport characteristics and photoelectric properties of magnetic semiconductor NiBr2 monolayer. Acta Physica Sinica, 2022, 71(9): 097502. doi: 10.7498/aps.71.20212384
    [3] Li Chun-Lei, Xu Yan, Zheng Jun, Wang Xiao-Ming, Yuan Rui-Yang, Guo Yong. Light-field assisted spin-polarized transport properties in magnetic-electric barrier structures. Acta Physica Sinica, 2020, 69(10): 107201. doi: 10.7498/aps.69.20200237
    [4] Liang Shi-Heng, Lu Yuan, Han Xiu-Feng. Research progress of spin light emitting diode. Acta Physica Sinica, 2020, 69(20): 208501. doi: 10.7498/aps.69.20200866
    [5] Hou Hai-Yan, Yao Hui, Li Zhi-Jian, Nie Yi-Hang. Valley and spin polarization manipulated by electric field in magnetic silicene superlattice. Acta Physica Sinica, 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [6] Jiang En-Hai, Zhu Xing-Feng, Chen Ling-Fu. First-principles study of the electronic structure, magnetism, and spin-polarization in Heusler alloy Co2MnAl(100) surface. Acta Physica Sinica, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [7] Yi Ding, Wu Zhen, Yang Liu, Dai Ying, Xie Shi-Jie. Spin-polarization of organic molecules at the ferromagnetic surface. Acta Physica Sinica, 2015, 64(18): 187305. doi: 10.7498/aps.64.187305
    [8] Zheng Yuan-Yuan, Ren Gui-Ming, Chen Rui, Wang Xing-Ming, Chen Xiao-Hong, Wang Ling, Yuan Li, Huang Xiao-Feng. Spin polarization and potential energy function of FeH2. Acta Physica Sinica, 2014, 63(21): 213101. doi: 10.7498/aps.63.213101
    [9] Qian Yu. Spatiotemporal modulation induced coexistence of meandering spiral wave and travelling spiral wave. Acta Physica Sinica, 2013, 62(5): 058201. doi: 10.7498/aps.62.058201
    [10] Li Huan, Guo Wei. Effect of spin polarization on the ground state of Kondo system. Acta Physica Sinica, 2010, 59(10): 7320-7326. doi: 10.7498/aps.59.7320
    [11] Chen Hua, Du Lei, Zhuang Yi-Qi, Niu Wen-Juan. Relation between charge shot noise and spin polarization governed by Rashba spin orbit interaction. Acta Physica Sinica, 2009, 58(8): 5685-5692. doi: 10.7498/aps.58.5685
    [12] Chen Xiao-Xue, Teng Li-Hua, Liu Xiao-Dong, Huang Qi-Wen, Wen Jin-Hui, Lin Wei-Zhu, Lai Tian-Shu. Study of injection and relaxation of electron spins in InGaN film by time-resolved absorption spectroscopy. Acta Physica Sinica, 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [13] Teng Li-Hua, Yu Hua-Liang, Huang Zhi-Ling, Wen Jin-Hui, Lin Wei-Zhu, Lai Tian-Shu. Effect of spin polarization on electron recombination dynamics in bulk intrinsic GaAs. Acta Physica Sinica, 2008, 57(10): 6593-6597. doi: 10.7498/aps.57.6593
    [14] Tang Zhen-Kun, Wang Ling-Ling, Tang Li-Ming, You Kai-Ming, Zou Bing-Suo. Spin polarized transport of two-dimensional electron gas through step-magnetic barrier structure. Acta Physica Sinica, 2008, 57(9): 5899-5905. doi: 10.7498/aps.57.5899
    [15] Guo Li-Jun, Wüstenberg Jan-Peter, Oleksiy Andreyev, Bauer Michael, Aeschlimann Martin. Spin dynamics of GaAs(100) by two-photon photoemission. Acta Physica Sinica, 2005, 54(7): 3200-3205. doi: 10.7498/aps.54.3200
    [16] Zhang Chang-Wen, Li Hua, Dong Jian-Min, Wang Yong-Juan, Pan Feng-Chun, Gu Yong-Quan, Li Wei. Studies on the electronic structures, exchange coupling and magnetic moments of spin and orbital in the compound SmCo55. Acta Physica Sinica, 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [17] Fu Ji-Yong, Ren Jun-Feng, Liu De-Sheng, Xie Shi-Jie. Spin polarization study on one-dimensional ferromagnetic metal/conjugated polymers. Acta Physica Sinica, 2004, 53(6): 1989-1993. doi: 10.7498/aps.53.1989
    [18] Chen Li, Li Hua, Dong Jian-Min, Pan Feng-Chun, Mei Liang-Mo. Study on the spin-polarized electronicstructures and atomic magnetic moments ofcluster La8-xBaxCuO6. Acta Physica Sinica, 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
    [19] Qin Jian-Hua, Guo Yong, Chen Xin-Yi, Gu Bing-Lin. A study on spin-polarized transport properties in magnetic-electric barrier st ructures. Acta Physica Sinica, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
    [20] GUO YONG, GU BING-LIN, YOSHIYUKI KAWAZOE. TUNNELING TRANSPORT OF TWO-DIMENSIONAL SPIN-ELECTRONS THROUGH MAGNETIC QUANTUM S TRUCTURES. Acta Physica Sinica, 2000, 49(9): 1814-1820. doi: 10.7498/aps.49.1814
  • supplement 2025年第74卷第9期090702《碱金属原子气室中自旋极化态的高时空分辨调制方法》补充材料.ZIP supplement
Metrics
  • Abstract views:  463
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Received Date:  25 November 2024
  • Accepted Date:  03 March 2025
  • Available Online:  05 March 2025
  • Published Online:  05 May 2025

/

返回文章
返回
Baidu
map