-
B3LYP/6-311++g**水平上预测了FeH2及FeH稳定构型讨论了其自旋极化效应,并与实验结果进行了比较. 结果表明其基态分别为FeH2(5A1)和FeH(4Δ),自旋态对构型和物理性质均有显著影响. FeH2具有C2v对称性. 势能与核间距的关系用4参数Murrell-Sorbie函数进行拟合得到其分析势能函数. 由此推导出力常数和光谱数据,并由多体项展式理论导出了基态FeH2分子的分析势能函数. 用这个分析势能函数分析表明:H+FeH生成FeH2(C2v)分子通道存在一个4.68 eV深的势阱,易生成H–Fe–H络合物分子. 反应Fe+H2 → HFeH,ΔH=-0.08305 eV,是放热反应.
-
关键词:
- 氢化铁分子 /
- 密度泛函理论(DFT) /
- 自旋极化 /
- 分析势能函数
Among the three methods (B3LYP, BP86 and B3LYP*) in density functional theory (DFT), the best tools for predicting the ground state of metal hydride, the B3LYP method for predicting the harmonic frequencies and geometric parameters of the ground state of FeH2 gives result in good accordance with the experimental data; so it is employed to optimize the structure of molecules FeH and FeH2 in possible geometries and multiplicities based on 6-311++g(d,p) level in searching of the structure with the lowest energy. Results show that their electronic states in the ground states are FeH(4Δ) and FeH2(5A1), supposing that the two molecules have three and four unpaired electrons respectively, with spin polarization effect, and they are paramagnetic substances, and the stable structure of molecule FeH2 is of C2v symmetry. The Murrell-Sorbie potential energy function-the sufficient analytical potential function form for biatomic molecules-with 4 parameters in molecule FeH is derived via the least square method. Their spectra data and force constants are deduced according to the results. The analytical potential energy function of FeH2 is also obtained from the many-body expansion theory, which gives the analytical potential function of triatom molecules of the single-value potential surface consisting of three parts with single body terms, two body terms, and three body terms. The deduced analytical functions for FeH2 in this paper predict successfully a global minimum stable structure of quintet FeH2 with a 4.68 eV depth potential trap, and other higher energy stable and saddle structures. This potential function predicts the balanced ground structure and the second derivative force constants of this molecule. According to the potential function of FeH2(C2v), when it is formed from H and FeH, a potential trap with its depth being 4.68 eV is excited and the complex molecule of H–Fe–H is easily formed. The reaction of Fe+H2 → HFeH is exothermic with ΔH=-0.08305 eV.-
Keywords:
- hydride iron /
- density functional theory (DFT) /
- spin polarization /
- potential energy function
[1] Wende S Reiners A G. Ludwig H 2009 Astro. Astrophys. 508 1429
[2] Körsgen H Mrtz P Lipus K Urban W, Towle J P Brown J M 1996 J. Chem. Phys. 104 4859
[3] Ozin G A McCaffrey J G 1984 J. Phys. Chem 88 645
[4] Rubinovitz R L Nixon E R 1986 J. Phys. Chem 90 1940
[5] Heike M Christel M, Marian M 1998 Mol. Phys. 94 843
[6] Ishimatsu N 2011 The Rev. Hig. Pres. Sci. and Tech. 21 176 (in Japanese)
[7] Narygina O Dubrovinsky L S McCammon C A Kurnosov A Kantor I Y Prakapenka V B Dubrovinskaia N A 2011 Ear Plan Sci Let 307 409
[8] Matsuoka T, Hirao N Ohishi Y K Shimizu, Machida A Aoki K 2011 The Rev. Hig. Pres. Sci. and Tech. 21 190 (in Japanese) [Matsuoka T, Hirao N Ohishi Y K Shimizu, Machida A Aoki K 2011高圧力の科学と技術 21 190]
[9] Körsgen H Evenson K M Brown J M 1997 J. Chem. Phys 107 1025
[10] Körsgen H Urban W Brown J M 1999 J. Chem. Phys. 110 3861
[11] Miller A E S Feigerle C S Lineberger W C 1986 J. Chem. Phys. 84 4127
[12] Martini H Marian C M 1998 Molecular Physics 94 843
[13] Minot C Demangeat C 1987 J. Chem. Phys. 86 2161
[14] Tanaka K, Nobusada K 2004 Chem. Phys. Lett. 388 389
[15] Siegbahn P E M Blomberg M R A Bauschlicher J C W 1984 J. Chem. Phys. 81 1373
[16] Granucci G Persico M 1992 Chem. Phys. 167 121
[17] Martini H Marian C M Peri M 1998 Mol. Phys. 95 27
[18] Xuefeng W, Andrews L 2009 J. Phys. Chem. A 113 551
[19] Du Q Wang L, Chen X H, Wang H Y, Gao T Zhu Z H 2009 Acta Phys. Sin. 58 0178 (in Chinese) [杜泉, 王玲, 谌晓洪, 王红艳, 高涛, 朱正和 2009 58 0178]
[20] Becke A D 1988 Phys. Rew. A 38 3098
[21] Lee C, Yang W Parr R G 1988 Phys. ReV. B 37 785
[22] Becke A D 1988 Phys. ReV. A 38 3098
[23] Perdew J P 1986 Phys. ReV. B 33 8822
[24] Dendramis D Zee R J V Weltner J W 1979 The Astro 231 632
[25] Zhu Z H 1996 Atomic and Molecular Reaction Static (Beijing: Science Press) (in Chinses) [朱正和1996原子分子反应静力学(北京: 科学出版社)]
[26] Du Q, Wang L, Shen X H, Gao T 2006 Acta Phys. Sin. 55 6308 (in Chinese) [杜泉, 王玲, 谌晓洪, 高涛 2006 55 6308]
[27] Hu S L, Shi T Y 2013 Chin. Phys. B 22 093101
[28] Wu D L, Tan B, Wan H J, Xie A D 2013 Chin. Phys. B 22 123101
-
[1] Wende S Reiners A G. Ludwig H 2009 Astro. Astrophys. 508 1429
[2] Körsgen H Mrtz P Lipus K Urban W, Towle J P Brown J M 1996 J. Chem. Phys. 104 4859
[3] Ozin G A McCaffrey J G 1984 J. Phys. Chem 88 645
[4] Rubinovitz R L Nixon E R 1986 J. Phys. Chem 90 1940
[5] Heike M Christel M, Marian M 1998 Mol. Phys. 94 843
[6] Ishimatsu N 2011 The Rev. Hig. Pres. Sci. and Tech. 21 176 (in Japanese)
[7] Narygina O Dubrovinsky L S McCammon C A Kurnosov A Kantor I Y Prakapenka V B Dubrovinskaia N A 2011 Ear Plan Sci Let 307 409
[8] Matsuoka T, Hirao N Ohishi Y K Shimizu, Machida A Aoki K 2011 The Rev. Hig. Pres. Sci. and Tech. 21 190 (in Japanese) [Matsuoka T, Hirao N Ohishi Y K Shimizu, Machida A Aoki K 2011高圧力の科学と技術 21 190]
[9] Körsgen H Evenson K M Brown J M 1997 J. Chem. Phys 107 1025
[10] Körsgen H Urban W Brown J M 1999 J. Chem. Phys. 110 3861
[11] Miller A E S Feigerle C S Lineberger W C 1986 J. Chem. Phys. 84 4127
[12] Martini H Marian C M 1998 Molecular Physics 94 843
[13] Minot C Demangeat C 1987 J. Chem. Phys. 86 2161
[14] Tanaka K, Nobusada K 2004 Chem. Phys. Lett. 388 389
[15] Siegbahn P E M Blomberg M R A Bauschlicher J C W 1984 J. Chem. Phys. 81 1373
[16] Granucci G Persico M 1992 Chem. Phys. 167 121
[17] Martini H Marian C M Peri M 1998 Mol. Phys. 95 27
[18] Xuefeng W, Andrews L 2009 J. Phys. Chem. A 113 551
[19] Du Q Wang L, Chen X H, Wang H Y, Gao T Zhu Z H 2009 Acta Phys. Sin. 58 0178 (in Chinese) [杜泉, 王玲, 谌晓洪, 王红艳, 高涛, 朱正和 2009 58 0178]
[20] Becke A D 1988 Phys. Rew. A 38 3098
[21] Lee C, Yang W Parr R G 1988 Phys. ReV. B 37 785
[22] Becke A D 1988 Phys. ReV. A 38 3098
[23] Perdew J P 1986 Phys. ReV. B 33 8822
[24] Dendramis D Zee R J V Weltner J W 1979 The Astro 231 632
[25] Zhu Z H 1996 Atomic and Molecular Reaction Static (Beijing: Science Press) (in Chinses) [朱正和1996原子分子反应静力学(北京: 科学出版社)]
[26] Du Q, Wang L, Shen X H, Gao T 2006 Acta Phys. Sin. 55 6308 (in Chinese) [杜泉, 王玲, 谌晓洪, 高涛 2006 55 6308]
[27] Hu S L, Shi T Y 2013 Chin. Phys. B 22 093101
[28] Wu D L, Tan B, Wan H J, Xie A D 2013 Chin. Phys. B 22 123101
计量
- 文章访问数: 8123
- PDF下载量: 576
- 被引次数: 0