搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机分子在铁磁界面处的自旋极化研究

伊丁 武镇 杨柳 戴瑛 解士杰

引用本文:
Citation:

有机分子在铁磁界面处的自旋极化研究

伊丁, 武镇, 杨柳, 戴瑛, 解士杰

Spin-polarization of organic molecules at the ferromagnetic surface

Yi Ding, Wu Zhen, Yang Liu, Dai Ying, Xie Shi-Jie
PDF
导出引用
  • 采用第一性原理计算的方法, 通过改变有机苯分子与密排六方Co(0001)面之间的不同接触方式, 研究了多种接触构型下有机分子界面的自旋极化. 计算发现, Co原子的3d电子与苯的C原子的2p电子之间存在耦合, 导致费米能级处上下两种自旋的态密度不再相等, 苯分子自旋简并解除, 出现明显的自旋极化. 自旋极化度随着分子与Co电极距离的变化, 呈现出反转的特性.
    Study on organic/ferromagnetic interface is helpful for understanding the effects of magnetoresistance in organic spin-valve, because one of the reasons of leading to this phenomenon is due to the spin injection at the interface. However, the interactions at the organic/ferromagnetic interface are complicated and full of possibilities, and the effects are still under debate till now. One possible cause is that the adsorption of organic molecules on the ferromagnetic surface is random, which leads to various adsorbing configurations. Therefore, in this paper we select some typical adsorbing configurations of benzene/Co system to reveal the effect of spin-polarization of organic molecules at the ferromagnetic surface by using first-principles calculations. It is obtained that the spin degenerated electronic states of benzene molecule will be broken due to the coupling between the 3d electrons of Co atoms and the 2p electrons of benzene molecule. The density of states at the Fermi level becomes spin related and a spin polarization appears in the benzene molecule. For both of the configurations T1T2 and T1H12, from the projected density of states we can find that the majority-spin electrons of the benzene molecule is oriented in opposition to the direction of the ferromagnetic electrode at the Fermi level, which means that the organic molecules filter and reverse the original spin direction of the injected electrons from the ferromagnetic electrode. As mentioned above, the adsorbing configurations are different, so we consider three kinds of configurations with different adsorbing distances for further studying the spin polarization at the interface. On the basis of the configuration T1T2, distances of 2.0 Å, 2.2 Å and 2.4 Å are studied, where 2.0 Å is the equilibrium position we obtained with full relaxation. It should be noted that we do not relax the geometric structure of the system in this part of study. It is found that the spin polarization is sensitively dependent on the distance between benzene and Co surface. The spin-polarization near the Fermi level even changes its direction from positive to negative with the increase of the distance in such a small range. Our studies reflect the complexity of organic molecule/ferromagnetic electrode interfaces, and enrich the understanding of this field.
      通信作者: 解士杰, xsj@sdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11174181, 11174180)和高等学校学科创新引智计划(111计划)(批准号: B13029)资助的课题.
      Corresponding author: Xie Shi-Jie, xsj@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174181, 11174180) and the 111 Project of China (Grant No. B13029).
    [1]

    Dediu V A, Hueso L E, Bergenti I, Taliani C 2009 Nature Mater. 8 707

    [2]

    Barraud C, Seneor P, Mattana R, Fusil S, Bouzehouane K, Deranlot C, Graziosi P, Hueso L, Bergenti I, Dediu V, Petroff F, Fert A 2010 Nature Phys. 6 615

    [3]

    Ehrenfreund E, Vardeny Z V 2013 Phys. Chem. Chem. Phys. 15 7967

    [4]

    Sun D, Yin L, Sun C, Guo H, Gai Z, Zhang X G, Ward T Z, Cheng Z, Shen J 2010 Phys. Rev. Lett. 104 236602

    [5]

    Schulz L, Nuccio L, Willis M, Desai P, Shakya P, Kreouzis T, Malik V K, Bernhard C, Pratt F L, Morley N A, Suter A, Nieuwenhuys G J, Prokscha T, Morenzoni E, Gillin W P, Drew A J 2011 Nature Mater. 10 39

    [6]

    Xiong Z H, Wu D, Vardeny Z V, Shi J 2004 Nature 427 821

    [7]

    Atodiresei N, Brede J, Lazić P, Caciuc V, Hoffmann G, Wiesendanger R, Blgel S 2010 Phys. Rev. Lett. 105 066601

    [8]

    Sanvito S 2010 Nature 467 664

    [9]

    Xie S J, Ahn K H, Smith D L, Bishop A R, Saxena A 2003 Phys. Rev. B 67 125202

    [10]

    Dediu V, Hueso L E, Bergenti I, Riminucci A, Borgatti F, Graziosi P, Newby C, Casoli F, De Jong M P, Taliani C, Zhan Y 2008 Phys. Rev. B 78 115203

    [11]

    Sanvito S 2010 Nature Phys. 6 562

    [12]

    Raman K V, Kamerbeek A M, Mukherjee A, Atodiresei N, Sen T K, Lazić P, Caciuc V, Michel R, Stalke D, Mandal S K, Blgel S, Mnzenberg M, Moodera J S 2013 Nature 493 509

    [13]

    Steil S, Großmann N, Laux M, Ruffing A, Steil D, Wiesenmayer M, Mathias S, Monti O L A, Cinchetti M, Aeschlimann M 2013 Nature Phys. 9 242

    [14]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [15]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [16]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [17]

    Wang X, Zhu Z, Manchon A, Schwingenschlögl U 2013 Appl. Phys. Lett. 102 111604

    [18]

    Callsen M, Caciuc V, Kiselev N, Atodiresei N, Blgel S 2013 Phys. Rev. Lett. 111 106805

    [19]

    Javaid S, Lebègue S, Detlefs B, Ibrahim F, Djeghloul F, Bowen M, Boukari S, Miyamachi T, Arabski J, Spor D, Zegenhagen J, Wulfhekel W, Weber W, Beaurepaire E, Alouani M 2013 Phys. Rev. B 87 155418

    [20]

    Yi D, Yang L, Xie S J, Saxena A 2015 RSC Adv. 5 20617

    [21]

    Gong C, Lee G, Shan B, Vogel E M, Wallace R M, Cho K 2010 J. Appl. Phys. 108 123711

  • [1]

    Dediu V A, Hueso L E, Bergenti I, Taliani C 2009 Nature Mater. 8 707

    [2]

    Barraud C, Seneor P, Mattana R, Fusil S, Bouzehouane K, Deranlot C, Graziosi P, Hueso L, Bergenti I, Dediu V, Petroff F, Fert A 2010 Nature Phys. 6 615

    [3]

    Ehrenfreund E, Vardeny Z V 2013 Phys. Chem. Chem. Phys. 15 7967

    [4]

    Sun D, Yin L, Sun C, Guo H, Gai Z, Zhang X G, Ward T Z, Cheng Z, Shen J 2010 Phys. Rev. Lett. 104 236602

    [5]

    Schulz L, Nuccio L, Willis M, Desai P, Shakya P, Kreouzis T, Malik V K, Bernhard C, Pratt F L, Morley N A, Suter A, Nieuwenhuys G J, Prokscha T, Morenzoni E, Gillin W P, Drew A J 2011 Nature Mater. 10 39

    [6]

    Xiong Z H, Wu D, Vardeny Z V, Shi J 2004 Nature 427 821

    [7]

    Atodiresei N, Brede J, Lazić P, Caciuc V, Hoffmann G, Wiesendanger R, Blgel S 2010 Phys. Rev. Lett. 105 066601

    [8]

    Sanvito S 2010 Nature 467 664

    [9]

    Xie S J, Ahn K H, Smith D L, Bishop A R, Saxena A 2003 Phys. Rev. B 67 125202

    [10]

    Dediu V, Hueso L E, Bergenti I, Riminucci A, Borgatti F, Graziosi P, Newby C, Casoli F, De Jong M P, Taliani C, Zhan Y 2008 Phys. Rev. B 78 115203

    [11]

    Sanvito S 2010 Nature Phys. 6 562

    [12]

    Raman K V, Kamerbeek A M, Mukherjee A, Atodiresei N, Sen T K, Lazić P, Caciuc V, Michel R, Stalke D, Mandal S K, Blgel S, Mnzenberg M, Moodera J S 2013 Nature 493 509

    [13]

    Steil S, Großmann N, Laux M, Ruffing A, Steil D, Wiesenmayer M, Mathias S, Monti O L A, Cinchetti M, Aeschlimann M 2013 Nature Phys. 9 242

    [14]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [15]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [16]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [17]

    Wang X, Zhu Z, Manchon A, Schwingenschlögl U 2013 Appl. Phys. Lett. 102 111604

    [18]

    Callsen M, Caciuc V, Kiselev N, Atodiresei N, Blgel S 2013 Phys. Rev. Lett. 111 106805

    [19]

    Javaid S, Lebègue S, Detlefs B, Ibrahim F, Djeghloul F, Bowen M, Boukari S, Miyamachi T, Arabski J, Spor D, Zegenhagen J, Wulfhekel W, Weber W, Beaurepaire E, Alouani M 2013 Phys. Rev. B 87 155418

    [20]

    Yi D, Yang L, Xie S J, Saxena A 2015 RSC Adv. 5 20617

    [21]

    Gong C, Lee G, Shan B, Vogel E M, Wallace R M, Cho K 2010 J. Appl. Phys. 108 123711

  • [1] 朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算.  , 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [2] 赵俊, 姚璨, 曾晖. 新型正交相BN单层半导体有毒气体吸附性能及电输运性能的理论研究.  , 2024, 73(12): 126802. doi: 10.7498/aps.73.20231621
    [3] 张江林, 王仲民, 王殿辉, 胡朝浩, 王凤, 甘伟江, 林振琨. V/Pd界面氢吸附扩散行为的第一性原理研究.  , 2023, 72(16): 168801. doi: 10.7498/aps.72.20230132
    [4] 李小林, 袁坤, 何嘉乐, 刘洪峰, 张建波, 周阳. NH3在TaC(0001)表面吸附和解离的第一性原理研究.  , 2022, 71(1): 017103. doi: 10.7498/aps.71.20210400
    [5] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理.  , 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [6] 秦文静, 徐波, 孙宝珍, 刘刚. 原子吸附的二维CrI3铁磁半导体电学和磁学性质的第一性原理研究.  , 2021, 70(11): 117101. doi: 10.7498/aps.70.20210090
    [7] 李小林, 袁坤, 何嘉乐, 刘洪峰, 张建波, 周阳. NH3在TaC(0001)表面吸附和解离的第一性原理研究*.  , 2021, (): . doi: 10.7498/aps.70.20210400
    [8] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究.  , 2021, (): . doi: 10.7498/aps.70.20211631
    [9] 王小卡, 汤富领, 薛红涛, 司凤娟, 祁荣斐, 刘静波. H,Cl和F原子钝化Cu2ZnSnS4(112)表面态的第一性原理计算.  , 2018, 67(16): 166401. doi: 10.7498/aps.67.20180626
    [10] 贺艳斌, 贾建峰, 武海顺. N2H4在NiFe(111)合金表面吸附稳定性和电子结构的第一性原理研究.  , 2015, 64(20): 203101. doi: 10.7498/aps.64.203101
    [11] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究.  , 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [12] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究.  , 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [13] 路战胜, 李沙沙, 陈晨, 杨宗献. Cu/CeO2(110)界面特性的第一性原理研究.  , 2013, 62(11): 117301. doi: 10.7498/aps.62.117301
    [14] 刘先锋, 韩玖荣, 江学范. 阻挫三角反铁磁AgCrO2螺旋自旋序的第一性原理研究.  , 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [15] 陈玉红, 曹一杰, 任宝兴. Ti原子在Al(110)表面吸氢过程中催化作用的第一性原理研究.  , 2010, 59(11): 8015-8020. doi: 10.7498/aps.59.8015
    [16] 唐振坤, 王玲玲, 唐黎明, 游开明, 邹炳锁. 磁台阶势垒结构中二维电子气的自旋极化输运.  , 2008, 57(9): 5899-5905. doi: 10.7498/aps.57.5899
    [17] 陈国栋, 王六定, 张教强, 曹得财, 安 博, 丁富才, 梁锦奎. 掺硼水吸附碳纳米管电子场发射性能的第一性原理研究.  , 2008, 57(11): 7164-7167. doi: 10.7498/aps.57.7164
    [18] 魏彦薇, 杨宗献. Au在Zr掺杂的CeO2(110)面吸附的第一性原理研究.  , 2008, 57(11): 7139-7144. doi: 10.7498/aps.57.7139
    [19] 付吉永, 任俊峰, 刘德胜, 解士杰. 一维铁磁/有机共轭聚合物的自旋极化研究.  , 2004, 53(6): 1989-1993. doi: 10.7498/aps.53.1989
    [20] 郭 永, 顾秉林, 川添良幸. 磁量子结构中二维自旋电子的隧穿输运.  , 2000, 49(9): 1814-1820. doi: 10.7498/aps.49.1814
计量
  • 文章访问数:  6799
  • PDF下载量:  362
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-15
  • 修回日期:  2015-06-15
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map