搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准平行光干涉的滤波型多抖动相控方法研究

柴金华 陈飞

引用本文:
Citation:

准平行光干涉的滤波型多抖动相控方法研究

柴金华, 陈飞

Methodology of filter-type multi-dithering phase control for quasi parallel light interference

Chai Jin-Hua, Chen Fei
PDF
导出引用
  • 提出了一种准平行光干涉的滤波型多抖动相控方案,对该方案的相干光强进行了理论分析,在此基础上提出了滤波型多抖动法的相控原理,进行了滤波型多抖动法的相控数值分析和模拟实验.结果表明:该方法可识别出各路光波的相位差,反馈与相位差信号成比例的直流电压去控制相位调制器,可实现相位差的校正,相位控制电压输出范围为0.034.45 V,控制带宽为2.5 kHz.
    The quasi parallel light interference is one kind of basic ways to use the energy of interference light to interact with matter. Because the phase of each parallel light beam needs to meet the coherent condition, it is required that the phase of each light beam be controlled timely. There are some kinds of phase control methods, such as the heterodyne phase-locking method, the stochastic parallel gradient descent algorithm, the self-referred and self-synchronous phase-locking method the multi-dithering phase-locking method, etc. Among them, the multi-dithering method needs not the referenc light, it is to load multi-frequency sinusoid signals to the phase modulator, and realize the recognition of phase difference and the output of feedback voltage by multiplying circuit and integrating circuit. In view of the shortcomings of the existing methods, a scheme of filter-type multi-dithering phase control for quasi parallel light interference is proposed, in which the phase differences are identified and corrected by the modulation signals and filtering signals of different frequencies. Theoretical analysis of coherent light intensity for the scheme is made. The principle of filter-type multi-dithering phase control method is put forward, and the numerical analysis and simulation experiment for filter-type multi-dithering phase control method are carried out. In the simulation experiment, the fiber interference light path is used to simulate the light intensity of quasi parallel light interference at one point in space, and the change of photoelectric signal indicates the change of interference light intensity. The phase control feedback loop is composed of photoelectric signal amplifying circuit, bandpass filtering circuit, amplitude measuring circuit, direct current amplifying circuit and adder circuit. The results have shown that the phase difference among light beams can be recognized by the method, and the direct current voltage signal that is proportional to the phase difference of signal can be fed to control the phase modulator. The phase difference can be corrected. The control bandwidth is 2.5 kHz, and the output voltage range of phase control is 0.034.45 V. Compared with the classical multi-dithering method, the method of filter-type multi-dithering phase control has some advantages. Each multiplying circuit in the classical method needs a very small amplitude reference signal, which causes the reference signal to have a very small range of values, and the relationship between integral time and modulation period needs considering. The integral time is usually ten times longer than the modulation period, which causes the control bandwidth of the system to decrease. However, the feedback loop of the filter-type multi-dithering phase control method does not require any reference signal, so each signal does not affect each other, and the increase in the number of beams does not have a significant influence on the control bandwidth either. Therefore the filter-type multi-dithering phase control method is a useful phase-control method.
      通信作者: 柴金华, ch170626@sina.com
      Corresponding author: Chai Jin-Hua, ch170626@sina.com
    [1]

    Liu Z J, Hou J, Xu X J, Feng Y, Zhou P, Ma Y X, Wang X L, Lei B, Cao J Q 2009 Chin. J. Lasers 36 2773(in Chinese) [刘泽金, 侯静, 许晓军, 冯莹, 周朴, 马阎星, 王小林, 雷兵, 曹涧秋 2009 中国激光 36 2773]

    [2]

    Wang X L, Zhou P, Xu X J, Liu Z J, Chen Z L, Ma Y X, Ma H T, Li X, Zhao Y J 2009 Laser Optoelectronics Progress 05 13(in Chinese) [王小林, 周朴, 许晓军, 刘泽金, 陈子伦, 马阎星, 马浩统, 李霄, 赵伊君 2009 激光与光电子学进展 05 13]

    [3]

    Goodno G D, Komine H, McNaught S J, Weiss S B, Remond S, Long W 2006 Opt. Lett. 31 1247

    [4]

    Fan T Y 2005 IEEE J. Sel. Top. Quantum. Electron. 11 567

    [5]

    Underwood K J, Jones A M, Gopinath 2015 Appl. Opt. 54 5624

    [6]

    Uberna R, Bratcher A, Tiemann B 2010 Appl. Opt. 47 6762

    [7]

    Wang D T, Zhou W J, Wen W F, Peng Q X, Li Z R, Hu W H, Li Z J 2013 High Power Laser Part. Beams 25 1125(in Chinese) [王德田, 周维军, 温伟峰, 彭其先, 李泽仁, 胡文华, 李忠建 2013 强激光与粒子束 25 1125]

    [8]

    Xiao R, Hou J, Jiang Z F 2006 Acta Phys. Sin. 55 184(in Chinese) [肖瑞, 侯静, 姜宗福 2006 55 184]

    [9]

    Zhou P, Ma Y X, Wang X L, Ma H T, Xu X J, Liu Z J 2009 Chin. J. Lasers 36 2972(in Chinese) [周朴, 马阎星, 王小林, 马浩统, 许晓军, 刘泽金 2009 中国激光 36 2972]

    [10]

    Huang Z M, Tang X, Liu C L, Li J F, Zhang D Y, Wang X J, Han M 2015 Chin. J. Lasers 42 41(in Chinese) [黄智蒙, 唐选, 刘仓理, 李剑锋, 张大勇, 王小军, 韩梅 2015 中国激光 42 41]

    [11]

    Zheng Y, Shen F 2010 Chin. J. Lasers 37 631(in Chinese) [郑轶, 沈锋 2010 中国激光 37 631]

    [12]

    Mourou G, Brocklesby B, Tajima T, Limpert J 2013 Nature Photon. 07 258

    [13]

    Shay T M, Benham V, Baker J T 2006 Opt. Express 25 12022

    [14]

    Shay T M, Benham V, Baker J T 2007 IEEE J. Sel. Top. Quantum. Electron. 13 480

    [15]

    Vorontsov M A, Weyrauch T, Beresnev L A, Liu L 2009 IEEE. J. Sel. Top. Quantum. Electron. 15 269

    [16]

    Ma Y X, Wang X L, Zhou P, Ma H T, Zhao H C, Xu X J, Si L, Liu Z J, Zhao Y J 2010 High Power Laser Part. Beams 22 2803(in Chinese) [马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君 2010 强激光与粒子束 22 2803]

    [17]

    Ma Y X, Si L, Dong X L, Zhou P, Xu X J 2012 Chin. J. Lasers 39 0031(in Chinese) [马阎星, 司磊, 董小林, 周朴, 许晓军 2012 中国激光 39 0031]

    [18]

    Shay T M, Benham V 2004 Proc. SPIE 5550 313

    [19]

    Ma Y X 2012 Ph. D. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [马阎星 2012 博士学位论文 (长沙: 国防科技大学)]

    [20]

    Lin L, Loizos D N, Vorontsov M A, Cauwenberghs G 2007 SPIE 6708

    [21]

    Jolivet V, Bourdon P, Bennal B, Lombard L, Goular D 2009 IEEE. J. Sel. Top. Quantum. Electron. 15 257

    [22]

    Liang K M 2006 Methods of Mathematical Physics (Beijing: Higher Education Press) p247 (in Chinese) [梁昆淼 2006 数学物理方法(北京: 高等教育出版社) 第247页]

    [23]

    Wen W F, Wang D T, Zhou W J, Peng Q X 2014 J. Detect. Control 36 11(in Chinese) [温伟峰, 王德田, 周维军, 彭其先 2014 探测与控制学报 36 11]

  • [1]

    Liu Z J, Hou J, Xu X J, Feng Y, Zhou P, Ma Y X, Wang X L, Lei B, Cao J Q 2009 Chin. J. Lasers 36 2773(in Chinese) [刘泽金, 侯静, 许晓军, 冯莹, 周朴, 马阎星, 王小林, 雷兵, 曹涧秋 2009 中国激光 36 2773]

    [2]

    Wang X L, Zhou P, Xu X J, Liu Z J, Chen Z L, Ma Y X, Ma H T, Li X, Zhao Y J 2009 Laser Optoelectronics Progress 05 13(in Chinese) [王小林, 周朴, 许晓军, 刘泽金, 陈子伦, 马阎星, 马浩统, 李霄, 赵伊君 2009 激光与光电子学进展 05 13]

    [3]

    Goodno G D, Komine H, McNaught S J, Weiss S B, Remond S, Long W 2006 Opt. Lett. 31 1247

    [4]

    Fan T Y 2005 IEEE J. Sel. Top. Quantum. Electron. 11 567

    [5]

    Underwood K J, Jones A M, Gopinath 2015 Appl. Opt. 54 5624

    [6]

    Uberna R, Bratcher A, Tiemann B 2010 Appl. Opt. 47 6762

    [7]

    Wang D T, Zhou W J, Wen W F, Peng Q X, Li Z R, Hu W H, Li Z J 2013 High Power Laser Part. Beams 25 1125(in Chinese) [王德田, 周维军, 温伟峰, 彭其先, 李泽仁, 胡文华, 李忠建 2013 强激光与粒子束 25 1125]

    [8]

    Xiao R, Hou J, Jiang Z F 2006 Acta Phys. Sin. 55 184(in Chinese) [肖瑞, 侯静, 姜宗福 2006 55 184]

    [9]

    Zhou P, Ma Y X, Wang X L, Ma H T, Xu X J, Liu Z J 2009 Chin. J. Lasers 36 2972(in Chinese) [周朴, 马阎星, 王小林, 马浩统, 许晓军, 刘泽金 2009 中国激光 36 2972]

    [10]

    Huang Z M, Tang X, Liu C L, Li J F, Zhang D Y, Wang X J, Han M 2015 Chin. J. Lasers 42 41(in Chinese) [黄智蒙, 唐选, 刘仓理, 李剑锋, 张大勇, 王小军, 韩梅 2015 中国激光 42 41]

    [11]

    Zheng Y, Shen F 2010 Chin. J. Lasers 37 631(in Chinese) [郑轶, 沈锋 2010 中国激光 37 631]

    [12]

    Mourou G, Brocklesby B, Tajima T, Limpert J 2013 Nature Photon. 07 258

    [13]

    Shay T M, Benham V, Baker J T 2006 Opt. Express 25 12022

    [14]

    Shay T M, Benham V, Baker J T 2007 IEEE J. Sel. Top. Quantum. Electron. 13 480

    [15]

    Vorontsov M A, Weyrauch T, Beresnev L A, Liu L 2009 IEEE. J. Sel. Top. Quantum. Electron. 15 269

    [16]

    Ma Y X, Wang X L, Zhou P, Ma H T, Zhao H C, Xu X J, Si L, Liu Z J, Zhao Y J 2010 High Power Laser Part. Beams 22 2803(in Chinese) [马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君 2010 强激光与粒子束 22 2803]

    [17]

    Ma Y X, Si L, Dong X L, Zhou P, Xu X J 2012 Chin. J. Lasers 39 0031(in Chinese) [马阎星, 司磊, 董小林, 周朴, 许晓军 2012 中国激光 39 0031]

    [18]

    Shay T M, Benham V 2004 Proc. SPIE 5550 313

    [19]

    Ma Y X 2012 Ph. D. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [马阎星 2012 博士学位论文 (长沙: 国防科技大学)]

    [20]

    Lin L, Loizos D N, Vorontsov M A, Cauwenberghs G 2007 SPIE 6708

    [21]

    Jolivet V, Bourdon P, Bennal B, Lombard L, Goular D 2009 IEEE. J. Sel. Top. Quantum. Electron. 15 257

    [22]

    Liang K M 2006 Methods of Mathematical Physics (Beijing: Higher Education Press) p247 (in Chinese) [梁昆淼 2006 数学物理方法(北京: 高等教育出版社) 第247页]

    [23]

    Wen W F, Wang D T, Zhou W J, Peng Q X 2014 J. Detect. Control 36 11(in Chinese) [温伟峰, 王德田, 周维军, 彭其先 2014 探测与控制学报 36 11]

  • [1] 王井上, 王栋梁, 常国庆. 基于色散管理的自相位调制光谱展宽滤波技术.  , 2023, 72(9): 094205. doi: 10.7498/aps.72.20230088
    [2] 刘杰, 张建勋, 代煜. 基于多引导滤波的图像增强算法.  , 2018, 67(23): 238701. doi: 10.7498/aps.67.20181425
    [3] 刘宸, 孙宏祥, 袁寿其, 夏建平, 钱姣. 基于热声相控阵列的声聚焦效应.  , 2017, 66(15): 154302. doi: 10.7498/aps.66.154302
    [4] 凡木文, 黄林海, 李梅, 饶长辉. 抑制光束抖动的压电倾斜镜高带宽控制.  , 2016, 65(2): 024209. doi: 10.7498/aps.65.024209
    [5] 桑田, 蔡托, 刘芳, 蔡绍洪, 张大伟. 带虚设层的抗反射结构导模共振滤波器设计与分析.  , 2013, 62(2): 024215. doi: 10.7498/aps.62.024215
    [6] 余赟, 惠俊英, 陈阳, 惠娟, 殷敬伟. 基于时空滤波理论的低频声场干涉结构研究.  , 2012, 61(5): 054303. doi: 10.7498/aps.61.054303
    [7] 罗博文, 董建绩, 王晓, 黄德修, 张新亮. 基于相位调制和线性滤波的多信道多功能光学微分器.  , 2012, 61(9): 094213. doi: 10.7498/aps.61.094213
    [8] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响.  , 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [9] 冯爱霞, 龚志强, 王启光, 孙树鹏, 封国林. 北半球环流系统季节内及年际以上振荡信号的信息传输.  , 2011, 60(5): 059205. doi: 10.7498/aps.60.059205
    [10] 杨丽君, 马立金, 吕东启, 张连水. 四能级系统中相位控制电磁诱导透明研究.  , 2011, 60(10): 104205. doi: 10.7498/aps.60.104205
    [11] 李永放, 任立庆, 马瑞琼, 樊荣, 刘娟. 利用相位可控光场实现量子态波函数时域演化的量子控制.  , 2010, 59(3): 1671-1676. doi: 10.7498/aps.59.1671
    [12] 王丽, 李根全, 肖绍武, 郑长波. 四能级原子系统中电磁感应吸收的相位控制.  , 2010, 59(12): 8512-8517. doi: 10.7498/aps.59.8512
    [13] 王明军, 王兴元. 基于一阶时滞混沌系统参数辨识的保密通信方案.  , 2009, 58(3): 1467-1472. doi: 10.7498/aps.58.1467
    [14] 朱言午, 石顺祥, 刘继芳, 孙艳玲. 用于THz波段脉冲空间整形的滤波透镜的电磁场分析.  , 2009, 58(2): 1042-1045. doi: 10.7498/aps.58.1042
    [15] 雷佑铭, 徐 伟. 一类约瑟夫森结混沌系统的谐和共振控制.  , 2008, 57(6): 3342-3352. doi: 10.7498/aps.57.3342
    [16] 马 慧, 卜凡阁, 乔红霞, 仝殿民, 樊锡君. Doppler展宽的封闭原子系统中无反转增益的相位控制.  , 2008, 57(1): 206-211. doi: 10.7498/aps.57.206
    [17] 李晓奇, 王 剑, 王 飞, 胡响明. 非旋波耦合条件下微波控制的光学双稳与多稳.  , 2008, 57(4): 2236-2241. doi: 10.7498/aps.57.2236
    [18] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性.  , 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [19] 董海霞, 江海涛, 杨成全, 石云龙. 含双负缺陷的一维光子晶体耦合腔的杂质带特性.  , 2006, 55(6): 2777-2780. doi: 10.7498/aps.55.2777
    [20] 闵富红, 须文波, 徐振源. 用多凹槽滤波器控制混沌系统.  , 2002, 51(8): 1690-1695. doi: 10.7498/aps.51.1690
计量
  • 文章访问数:  5753
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-06
  • 修回日期:  2017-10-10
  • 刊出日期:  2018-01-05

/

返回文章
返回
Baidu
map