-
Ultrafast femtosecond laser system with hundreds of microjoules of energy, operating at a repetition frequency of several kilohertz, has very important applications in many fields such as medicine, mid-infrared laser generation, industrial processing, and vibrational spectroscopy. The chirped pulse amplification technique provides a feasible path to obtain light sources with those parameters. However, the use of chirped pulse amplification increases the technical complexity and cost of the laser system. Recently, the proposal of a multi-pass cell (MPC) nonlinear pulse compression technique has enabled us to obtain high power ultrafast femtosecond pulses with reduced technical complexity and cost. The device requires only two concave mirrors and a nonlinear medium in between. In the past seven years, the multi-pass cell nonlinear pulse compression technique has made great progress, making it possible to obtain ultrashort pulses with average power of more than a few kW and peak power of tens to hundreds of TW. In this work, we achieve nonlinear pulse compression of a 100-W picosecond laser by using an improved nonlinear pulse compression scheme that combines a hybrid of a plano-cancave multi-pass cell and multi-thin-plate. Using fused silica plates in plano-cancave cavity, the spectral bandwidth (FWHM) of input picosecond laser is broadened from 0.24 nm to 4.8 nm due to self-phase modulation effect, the pulse is compressed to 483 fs by dispersion compensation using grating pairs, which corresponds to a compression factor of 22, and the final output power of 44.2 W is obtained. Compared with traditional MPC, the plano-cancave cavity scheme we developed is a very promising solution for nonlinear compression due to its compactness, more stability and large compression ratio. [1] Mourou G 2019 Rev. Modern Phys. 91 030501
Google Scholar
[2] Fattahi H, Barros H G, Gorjan M, Nubbemeyer T, Alsaif B, Teisset C Y, Schultze M, Prinz S, Haefner M, Ueffing M, Alismail A, Vámos L, Schwarz A, Pronin O, Brons J, Geng X T, Arisholm G, Ciappina M, Yakovlev V S, Kim D E, Azzeer A M, Karpowicz N, Sutter D, Major Z, Metzger T, Krausz F 2014 Optica 1 45
Google Scholar
[3] Strickland D, Mourou G 1985 Opt. Commun. 55 447
Google Scholar
[4] Brabec T, Krausz F 2000 Rev. Modern Phys. 72 545
Google Scholar
[5] Kärtner F X, Morgner U, Ell R, Ippen E P, Fujimoto J G, Scheuer V, Angelow, Tschudi T 2001 The 4th Pacific Rim Conference on Lasers and Electro-Optics Chiba, Japan, July 15–19, 2001 pTuJ3_1
[6] Li W Q, Gan Z B, Yu L H, Wang C, Liu Y Q, Guo Z, Xu L, Xu M, Hang Y, Xu Y, Wang Z Y, Huang P, Cao P, Yao B, Zhang X B, Chen L R, Tang Y H, Li S, Liu X Y, Li S M, He M Z, Yin D J, Liang X Y, Leng Y X, Li R X, Xu Z Z 2018 Opt. Lett. 43 5681
Google Scholar
[7] Bagnoud V, Salin F 2000 Appl. Phys. B 70 S165
Google Scholar
[8] Sun D, Gao J, Wang W, Du X, Gao Y X, Gao Z C, Liang X Y 2021 IEEE Photonics J. 13 1
Google Scholar
[9] Schneider W, Ryabov A, Lombosi C S, Metzger T, Major Z S, Fülöp Z A, Baum P 2014 Opt. Lett. 39 6604
Google Scholar
[10] Wang D, Du Y L, Wu Y C, Xu L, An X C, Cao L Q, Li M, Wang J T, Sahng J L, Zhou T J, Tong LX, Gao Q S, Zhang K, Tang C, Zhu R H 2018 Opt. Lett. 43 3838
Google Scholar
[11] Gao Q S, Zhou T J, Shang J L, Wang D, Li M, Wu Y C, Wang J T, Wang Y N, Xu L, Du Y L, Chen X M, Zhang K, Tang C 2020 High Power and Particle Beams 32 121009
Google Scholar
[12] Russbueldt P, Mans T, Weitenberg J, Hoffmann H D, Poprawe P 2010 Opt. Lett. 35 4169
Google Scholar
[13] Veselis L, Bartulevicius T, Madeikis K, Michailovas A, Rusteika N 2018 Opt. Express 26 31873
Google Scholar
[14] Knall J M, Engholm M, Boilard T, Bernier M, Digonnet M J 2021 Phys. Rev. Lett. 127 013903
Google Scholar
[15] 高清松, 胡浩, 裴正平, 童立新, 周唐建, 唐淳 2012 中国激光 39 7
Gao Q S, Hu H, Pei Z P, Tong L X, Zhou T J, Tang C 2012 Chin. J. Lasers 39 7
[16] Dietz T, Jenne M, Bauer D, Scharun M, Sutter D, Killi A 2020 Opt. Express 28 11415
Google Scholar
[17] 王海林, 董静, 刘贺言, 郝婧婕, 朱晓, 张金伟 2021 光子学报 50 117
Google Scholar
Wang H L, Dong J, Liu H Y, Hao J J, Zhu X, Zhang J W 2021 Acta Photonica Sin. 50 117
Google Scholar
[18] Nubbemeyer T, Kaumanns M, Ueffing M, Gorjan M, Alismail A, Fattahi H, Brons J, Pronin O, Barros H G, Major Z, Metzger T, Sutter D, Krausz F 2017 Opt. Lett. 42 1381
Google Scholar
[19] 董雪岩, 李平雪, 李舜, 王婷婷, 杨敏 2021 中国激光 48 41
Google Scholar
Dong X Y, Li P X, Li Y, Wang T T, Yang M 2021 Chin. J. Lasers 48 41
Google Scholar
[20] Khazanov E A 2022 Quantum Electron. 52 208
Google Scholar
[21] Nagy T, Simon P, Veisz L 2021 Adv. Phys. X 6 1845795
Google Scholar
[22] Viotti A L, Seidel M, Escoto E, Rajhans S, Leemans W P, Hartl I, Heyl C M 2022 Optica 9 197
Google Scholar
[23] Jocher C, Eidam T, Hädrich S, Limpert J, Tünnermann A 2012 Opt. Lett. 37 4407
Google Scholar
[24] Nisoli M, De Silvestri S, Svelto O 1996 Appl. Phys. Lett. 68 2793
Google Scholar
[25] Hädrich S, Krebs M, Hoffmann A, Klenke A, Rothhardt J, Limpert J, Tünnermann A 2015 Light Sci. Appl. 4 e320
Google Scholar
[26] Rothhardt J, Hädrich S, Carstens H, Herrick N, Demmler S, Limpert J, Tünnermann A 2011 Opt. Lett. 36 4605
Google Scholar
[27] Herriott D, Kogelnik H, Kompfner R 1964 Appl. Opt. 3 523
Google Scholar
[28] Schulte J, Sartorius T, Weitenberg J, Vernaleken A, Russbueldt P 2016 Opt. Lett. 41 4511
Google Scholar
[29] Grebing C, Müller M, Buldt J, Stark H, Limpert J 2020 Opt. Lett. 45 6250
Google Scholar
[30] Kaumanns M, Kormin D, Nubbemeyer T, Pervak V, Karsch S 2021 Opt. Lett. 46 929
Google Scholar
[31] Weitenberg J, Saule T, Schulte J, Russbueldt P 2017 IEEE J. Quantum Electron. 53 1
Google Scholar
[32] Raab A K, Seidel M, Guo C, Sytcevich I, Arisholm G, Anne L H, Cord L A, Viotti A L 2022 Opt. Lett. 47 5084
Google Scholar
[33] Seidel M, Balla P, Li C, Arisholm G, Winkelmann L, Hartl I, Heyl C M 2022 Ultraf. Sci. 17 9754919
Google Scholar
[34] Song J J, Wang Z H, Wang X Z, Lü R C, Teng H, Zhu J F, Wei Z Y 2021 Chin. Opt. Lett. 19 093201
Google Scholar
[35] Lavenu L, Natile M, Guichard F, Zaouter Y, Delen X, Hanna M, Mottay E, Georges P 2018 Opt. Lett. 43 2252
Google Scholar
[36] Viotti A L, Alisauskas S, Tünnermann H, Escoto E, Seidel M, Dudde K, Manschwetus B, Hartl I, Christoph M H 2021 Opt. Lett. 46 4686
Google Scholar
[37] Russbueldt P, Weitenberg J, Schulte J, Meyer R, Meinhardt C, Hoffmann H D, Poprawe R 2019 Opt. Lett. 44 5222
Google Scholar
[38] Rajhans S, Velpula P K, Escoto E, Shalloo R, Farace B, Põder K, Osterhoff J, Leemans W P, Hartl I, Heyl C M 2021 Advanced Solid State Lasers Washington, DC, USA, October 3–7, 2021 paper AW2A.6
[39] Gierschke P, Grebing C, Abdelaal M, Lenski M, Buldt J, Wang Z, Heuermann T, Mueller M, Gebhardt M, Rothhardt J, Limpert J 2022 Opt. Lett. 47 3511.
Google Scholar
[40] Balla P, Wahid A B, Sytcevich I, Guo C, Viotti A L, Silletti L, Cartella A, Alisauskas S, Tavakol H, Grosse-Wortmann U, Schönberg A, Seidel M, Trabattoni A, Manschwetus B, Lang T, Calegari F, Couairon A, L’Huillier A, Arnold C L, Hartl I, Heyl C M 2020 Opt. Lett. 45 2572
Google Scholar
[41] Viotti A L, Li C, Arisholm G, Winkelmann L, Hartl I, Heyl C M, Seidel M 2023 Opt. Lett. 48 984
Google Scholar
[42] Omar A, Vogel T, Hoffmann M, Saraceno C J 2023 Opt. Lett. 48 1458
Google Scholar
[43] Heyl C M, Seidel M, Escoto E, Schönberg A, Carlström S, Arisholm G, Lang T, Hartl I 2022 J. Phys. Photonics 4 014002
Google Scholar
[44] Tsai C L, Meyer F, Omar A, Wang Y C, Liang A X, Lu C H, Hoffmann M, Yang S D, Saraceno C J 2019 Opt. Lett. 44 4115
Google Scholar
[45] Lavenu L, Natile M, Guichard F, Délen X, Hanna M, Zaouter Y, Georges P 2019 Opt. Express 27 1958
Google Scholar
[46] Daniault L, Cheng Z, Kaur J, Hergott J F, Réau F, Tcherbakoff O, Daher N, Délen X, Hanna M, Rodrigo L M 2021 Opt. Lett. 46 5264
Google Scholar
-
表 1 单级MPC非线性脉冲压缩技术研究进展
Table 1. Progress in single-stage MPC nonlinear pulse compression technique.
输入功率/W 输入脉宽/fs 重复频率/MHz 输出功率/W 输出脉宽/fs 压缩比 介质 文献 416 850 10 375 170 5 FS [28] 95 230 18.5 84 35 6 FS [31] 34 300 0.2 30 31 10 FS [32] 112 1240 1 65 39 31 FS [33] 1.6 12500 0.008 1.23 601 20 FS [34] 24 275 0.15 24 33 8 Ar [35] 320 730 0.1 250 56 13 Ar [36] 550 590 0.5 530 30 19 Ar [37] 8.6 1200 0.001 7.9 44 27 Ar [38] 65 138 0.3 51 35 4 Ar [39] 210 670 0.1 203 134 5 Ar [42] -
[1] Mourou G 2019 Rev. Modern Phys. 91 030501
Google Scholar
[2] Fattahi H, Barros H G, Gorjan M, Nubbemeyer T, Alsaif B, Teisset C Y, Schultze M, Prinz S, Haefner M, Ueffing M, Alismail A, Vámos L, Schwarz A, Pronin O, Brons J, Geng X T, Arisholm G, Ciappina M, Yakovlev V S, Kim D E, Azzeer A M, Karpowicz N, Sutter D, Major Z, Metzger T, Krausz F 2014 Optica 1 45
Google Scholar
[3] Strickland D, Mourou G 1985 Opt. Commun. 55 447
Google Scholar
[4] Brabec T, Krausz F 2000 Rev. Modern Phys. 72 545
Google Scholar
[5] Kärtner F X, Morgner U, Ell R, Ippen E P, Fujimoto J G, Scheuer V, Angelow, Tschudi T 2001 The 4th Pacific Rim Conference on Lasers and Electro-Optics Chiba, Japan, July 15–19, 2001 pTuJ3_1
[6] Li W Q, Gan Z B, Yu L H, Wang C, Liu Y Q, Guo Z, Xu L, Xu M, Hang Y, Xu Y, Wang Z Y, Huang P, Cao P, Yao B, Zhang X B, Chen L R, Tang Y H, Li S, Liu X Y, Li S M, He M Z, Yin D J, Liang X Y, Leng Y X, Li R X, Xu Z Z 2018 Opt. Lett. 43 5681
Google Scholar
[7] Bagnoud V, Salin F 2000 Appl. Phys. B 70 S165
Google Scholar
[8] Sun D, Gao J, Wang W, Du X, Gao Y X, Gao Z C, Liang X Y 2021 IEEE Photonics J. 13 1
Google Scholar
[9] Schneider W, Ryabov A, Lombosi C S, Metzger T, Major Z S, Fülöp Z A, Baum P 2014 Opt. Lett. 39 6604
Google Scholar
[10] Wang D, Du Y L, Wu Y C, Xu L, An X C, Cao L Q, Li M, Wang J T, Sahng J L, Zhou T J, Tong LX, Gao Q S, Zhang K, Tang C, Zhu R H 2018 Opt. Lett. 43 3838
Google Scholar
[11] Gao Q S, Zhou T J, Shang J L, Wang D, Li M, Wu Y C, Wang J T, Wang Y N, Xu L, Du Y L, Chen X M, Zhang K, Tang C 2020 High Power and Particle Beams 32 121009
Google Scholar
[12] Russbueldt P, Mans T, Weitenberg J, Hoffmann H D, Poprawe P 2010 Opt. Lett. 35 4169
Google Scholar
[13] Veselis L, Bartulevicius T, Madeikis K, Michailovas A, Rusteika N 2018 Opt. Express 26 31873
Google Scholar
[14] Knall J M, Engholm M, Boilard T, Bernier M, Digonnet M J 2021 Phys. Rev. Lett. 127 013903
Google Scholar
[15] 高清松, 胡浩, 裴正平, 童立新, 周唐建, 唐淳 2012 中国激光 39 7
Gao Q S, Hu H, Pei Z P, Tong L X, Zhou T J, Tang C 2012 Chin. J. Lasers 39 7
[16] Dietz T, Jenne M, Bauer D, Scharun M, Sutter D, Killi A 2020 Opt. Express 28 11415
Google Scholar
[17] 王海林, 董静, 刘贺言, 郝婧婕, 朱晓, 张金伟 2021 光子学报 50 117
Google Scholar
Wang H L, Dong J, Liu H Y, Hao J J, Zhu X, Zhang J W 2021 Acta Photonica Sin. 50 117
Google Scholar
[18] Nubbemeyer T, Kaumanns M, Ueffing M, Gorjan M, Alismail A, Fattahi H, Brons J, Pronin O, Barros H G, Major Z, Metzger T, Sutter D, Krausz F 2017 Opt. Lett. 42 1381
Google Scholar
[19] 董雪岩, 李平雪, 李舜, 王婷婷, 杨敏 2021 中国激光 48 41
Google Scholar
Dong X Y, Li P X, Li Y, Wang T T, Yang M 2021 Chin. J. Lasers 48 41
Google Scholar
[20] Khazanov E A 2022 Quantum Electron. 52 208
Google Scholar
[21] Nagy T, Simon P, Veisz L 2021 Adv. Phys. X 6 1845795
Google Scholar
[22] Viotti A L, Seidel M, Escoto E, Rajhans S, Leemans W P, Hartl I, Heyl C M 2022 Optica 9 197
Google Scholar
[23] Jocher C, Eidam T, Hädrich S, Limpert J, Tünnermann A 2012 Opt. Lett. 37 4407
Google Scholar
[24] Nisoli M, De Silvestri S, Svelto O 1996 Appl. Phys. Lett. 68 2793
Google Scholar
[25] Hädrich S, Krebs M, Hoffmann A, Klenke A, Rothhardt J, Limpert J, Tünnermann A 2015 Light Sci. Appl. 4 e320
Google Scholar
[26] Rothhardt J, Hädrich S, Carstens H, Herrick N, Demmler S, Limpert J, Tünnermann A 2011 Opt. Lett. 36 4605
Google Scholar
[27] Herriott D, Kogelnik H, Kompfner R 1964 Appl. Opt. 3 523
Google Scholar
[28] Schulte J, Sartorius T, Weitenberg J, Vernaleken A, Russbueldt P 2016 Opt. Lett. 41 4511
Google Scholar
[29] Grebing C, Müller M, Buldt J, Stark H, Limpert J 2020 Opt. Lett. 45 6250
Google Scholar
[30] Kaumanns M, Kormin D, Nubbemeyer T, Pervak V, Karsch S 2021 Opt. Lett. 46 929
Google Scholar
[31] Weitenberg J, Saule T, Schulte J, Russbueldt P 2017 IEEE J. Quantum Electron. 53 1
Google Scholar
[32] Raab A K, Seidel M, Guo C, Sytcevich I, Arisholm G, Anne L H, Cord L A, Viotti A L 2022 Opt. Lett. 47 5084
Google Scholar
[33] Seidel M, Balla P, Li C, Arisholm G, Winkelmann L, Hartl I, Heyl C M 2022 Ultraf. Sci. 17 9754919
Google Scholar
[34] Song J J, Wang Z H, Wang X Z, Lü R C, Teng H, Zhu J F, Wei Z Y 2021 Chin. Opt. Lett. 19 093201
Google Scholar
[35] Lavenu L, Natile M, Guichard F, Zaouter Y, Delen X, Hanna M, Mottay E, Georges P 2018 Opt. Lett. 43 2252
Google Scholar
[36] Viotti A L, Alisauskas S, Tünnermann H, Escoto E, Seidel M, Dudde K, Manschwetus B, Hartl I, Christoph M H 2021 Opt. Lett. 46 4686
Google Scholar
[37] Russbueldt P, Weitenberg J, Schulte J, Meyer R, Meinhardt C, Hoffmann H D, Poprawe R 2019 Opt. Lett. 44 5222
Google Scholar
[38] Rajhans S, Velpula P K, Escoto E, Shalloo R, Farace B, Põder K, Osterhoff J, Leemans W P, Hartl I, Heyl C M 2021 Advanced Solid State Lasers Washington, DC, USA, October 3–7, 2021 paper AW2A.6
[39] Gierschke P, Grebing C, Abdelaal M, Lenski M, Buldt J, Wang Z, Heuermann T, Mueller M, Gebhardt M, Rothhardt J, Limpert J 2022 Opt. Lett. 47 3511.
Google Scholar
[40] Balla P, Wahid A B, Sytcevich I, Guo C, Viotti A L, Silletti L, Cartella A, Alisauskas S, Tavakol H, Grosse-Wortmann U, Schönberg A, Seidel M, Trabattoni A, Manschwetus B, Lang T, Calegari F, Couairon A, L’Huillier A, Arnold C L, Hartl I, Heyl C M 2020 Opt. Lett. 45 2572
Google Scholar
[41] Viotti A L, Li C, Arisholm G, Winkelmann L, Hartl I, Heyl C M, Seidel M 2023 Opt. Lett. 48 984
Google Scholar
[42] Omar A, Vogel T, Hoffmann M, Saraceno C J 2023 Opt. Lett. 48 1458
Google Scholar
[43] Heyl C M, Seidel M, Escoto E, Schönberg A, Carlström S, Arisholm G, Lang T, Hartl I 2022 J. Phys. Photonics 4 014002
Google Scholar
[44] Tsai C L, Meyer F, Omar A, Wang Y C, Liang A X, Lu C H, Hoffmann M, Yang S D, Saraceno C J 2019 Opt. Lett. 44 4115
Google Scholar
[45] Lavenu L, Natile M, Guichard F, Délen X, Hanna M, Zaouter Y, Georges P 2019 Opt. Express 27 1958
Google Scholar
[46] Daniault L, Cheng Z, Kaur J, Hergott J F, Réau F, Tcherbakoff O, Daher N, Délen X, Hanna M, Rodrigo L M 2021 Opt. Lett. 46 5264
Google Scholar
Catalog
Metrics
- Abstract views: 2476
- PDF Downloads: 83
- Cited By: 0