搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多模式离子推力器输入参数设计及工作特性研究

李建鹏 靳伍银 赵以德

引用本文:
Citation:

多模式离子推力器输入参数设计及工作特性研究

李建鹏, 靳伍银, 赵以德

Design of input parameters and operating characteristics for multi-mode ion thruster

Li Jian-Peng, Jin Wu-Yin, Zhao Yi-De
PDF
HTML
导出引用
  • 针对我国小行星探测任务对电推进系统离子推力器设计要求, 基于等离子体基本理论建立了多模式离子推力器输入参数与输出特性关系, 完成各工作点下屏栅电压、束电流、阳极电流、加速电压, 流率等输入参数设计, 采用试验研究和理论分析的方法研究了推力器工作特性. 试验结果表明: 在设计输入参数下, 23个工作点推力最大误差小于3%, 比冲最大误差小于4%, 在功率为289—3106 W下, 推力为9.7—117.6 mN, 比冲为1220—3517 s, 效率为23.4%—67.8%, 电子返流极限电压随着推力增加单调减小, 最小、最大推力下分别为–79.5 V和–137 V, 放电损耗随着功率增大从359.7 W/A下降到210 W/A, 并在886 W时存在明显拐点, 效率随功率增大而上升, 在 1700 W后增速变缓并趋于稳定, 在轨应用可综合推力器性能、任务剖面要求、寿命, 合理设计输入参数区间, 制定控制策略.
    In view of the requirements for the application of electric propulsion system to China's asteroid deep space exploration mission, the relationship between input parameters and output characteristics of the thruster is established based on the basic plasma theory, and the input parameters such as screen grid voltage, beam current, anode current, acceleration voltage and propellent flow rate at each operating point are designed. The operating characteristics of the thruster are studied experimentally and theoretically. The test results show that under the design input parameter values, the maximum error of thrust is less than 3% and the maximum error of specific impulse is less than 4% at 23 operating points, the ion thruster can operate steadily in an input power range of 289–3106 W, thrust range of 9.7–117 mN, specific impulse range of 1220–3517 s, and efficiency range of 23.4%–67.8%. The electron backstreaming limited voltage decreases monotonically with thrust increasing and its minimum and maximum thrust value are 79.5 V and –137 V, respectively. The discharge loss decreases from 359.7 to 210 W/A as the power increases, and there is an adjusted turning at the input power 886 W, the efficiency increases with power increasing and after 1700 W the efficiency growth rate slows down and stabilizes. The optimum operating interval should be selected in practical on-orbit application. Controlling these parameters reasonably can improve thruster performance and lifetime. A 300-h wear test shows that the thruster works stably and the performance indicators meet the design requirements of ±3% uncertainty.
      通信作者: 靳伍银, 1171341698@qq.com
    • 基金项目: 国家自然科学基金(批准号: 61601210)、甘肃省科技计划项目(批准号: 21JR7RA744)和中国空间技术研究院杰出青年人才基金资助的课题
      Corresponding author: Jin Wu-Yin, 1171341698@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61601210), the Science and Technology Program of Gansu Province, China (Grant No. 21JR7RA744), and the Fund for Distinguished Young Scholars of China Academy of Space Technology
    [1]

    Burak K K, Deborah A L 2017 J. Propul. Power 33 264Google Scholar

    [2]

    Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948Google Scholar

    [3]

    Williams L T, Walker M L R 2014 J. Propul. Power 30 645Google Scholar

    [4]

    Rawlin V K, Sovey J S, Hamley J A 1999 Presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Albuquerque, USA, September 28–30, 1999 p99-4612-1

    [5]

    Brophy J R, MareuceiM G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Huntsville, USA, July 20–23, 2003 p2003-4542-1

    [6]

    Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut. 47 475Google Scholar

    [7]

    Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31–August 03, 2011 p2011-5661-1

    [8]

    Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11–14, 2004 p2004-3784-1

    [9]

    Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4348-1

    [10]

    Snyder J S, Goebel D M, Hofer R R, Polk, J E 2012 J. Propul. Power. 28 371Google Scholar

    [11]

    Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6–10, 2013 p2013-48-1

    [12]

    李建鹏, 张天平, 赵以德, 李娟, 郭德洲, 胡竟 2021 推进技术 42 1435

    Li J P, Zhang T P, ZhaoY D, Li J, Guo D Z, Hu J 2021 J. Propul. Technol. 42 1435

    [13]

    赵以德, 张天平, 黄永杰, 孙小菁, 孙运奎, 李娟, 杨福全, 池秀芬 2018 推进技术 39 942

    Zhao Y D, Zhang T P, Huang Y J, Sun X J, Sun Y K, Li J, Yang F Q, Chi X F 2018 J. Propul. Technol. 39 942

    [14]

    Jahn R G, Von J W 2006 Physics of Electric Propulsion (New York: Dover Pubns) p68

    [15]

    Farnell C C, Williams J D 2011 Plasma Sources Sci. Technol. 20 025006Google Scholar

    [16]

    Bittencourt J A 1980 Fundamentals of Plasma Physics (New York: Springer) p95

    [17]

    Piel A, Brown M 2011 Phys. Today 64 55

    [18]

    Mahalingam S, Menart J A 2010 J. Propul. Power 26 673Google Scholar

    [19]

    Mahalingam S, Menart J A 2007 J. Propul. Power 23 69Google Scholar

    [20]

    Brophy J R, Katz I, Polk J E, Anderson J R 2002 Presentedat the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Indianapolis, USA, July 7–10, 2002 p2002-4261-1

    [21]

    Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar

    [22]

    陈茂林, 夏广庆, 毛根旺 2014 63 182901Google Scholar

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901Google Scholar

    [23]

    龙建飞, 张天平, 李娟, 贾艳辉 2017 66 162901Google Scholar

    Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901Google Scholar

    [24]

    赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 69 115203Google Scholar

    Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203Google Scholar

    [25]

    Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol. 17 035010Google Scholar

    [26]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p245

    [27]

    赵以德, 吴宗海, 张天平, 耿海, 李娟, 李建鹏 2020 推进技术 01 187

    Zhao Y D, Wu Z H, Zhang T P, Geng H, Li J, Li J P 2020 J. Propul. Technol. 01 187

    [28]

    Green T S 1976 J. Phy. D:Appl. Phys. 9 1165Google Scholar

    [29]

    Boyd I D, Crofton M W 2004 J. Appl. Phys. 95 3285Google Scholar

    [30]

    Capece A M, Polk J E, Mikellides I G, Shepherd J E 2014 J. Appl. Phys. 115 153302Google Scholar

  • 图 1  离子推力器原理样机

    Fig. 1.  Ion thruster prototype model.

    图 2  离子推力器点火照片

    Fig. 2.  Discharge of the ion thruster.

    图 3  试验组成图

    Fig. 3.  Schematic of experimental principle.

    图 4  不同工况下推力、比冲实测值与要求设计值对比曲线 (a) 推力; (b) 比冲

    Fig. 4.  Comparison of measured thrust and specific impulse values with required design values at different operating modes: (a) Thrust; (b) specific impulse.

    图 5  不同工况下加速和减速电流实测值

    Fig. 5.  Measured acceleration and deceleration currents at different operating modes.

    图 6  电子返流极限电压与束电流的关系

    Fig. 6.  Electron backstreaming limited voltage versus beam current.

    图 7  离子推力器不同工况点下放电损耗和效率 (a) 放电损耗; (b) 效率.

    Fig. 7.  Discharge losses and efficiency of ion thrusters at different operating modes: (a) Discharge loss; (b) efficiency.

    图 8  离子推力器放电损耗与工质利用率

    Fig. 8.  Ion thruster discharge losses versus propellant utilization efficiency.

    图 9  离子推力器最大推力下300 h 短期磨损测试 (a) 推力和比冲; (b) 效率; (c) 加速电流和减速电流; (d) 主触电压和中触电压

    Fig. 9.  300 h wear test of ion thruster at maximum power: (a) Thrust and specific impulse; (b) efficiency; (c) acceleration current and deceleration current; (d) main cathode keeper voltage and neutralizer keeper voltage.

    表 1  离子推力器23个工作点下的工作参数

    Table 1.  Operating parameters at 23 modes.

    工作点比冲要
    求值/s
    推力要求
    值/mN
    屏栅电压
    计算值/V
    屏栅电压
    设计值/V
    束流计算
    值/A
    束流设
    计值/A
    流率计算
    值/(mg·s–1)
    流率设计
    值/(mg·s–1)
    TL011518103944200.3090.30.6720.804
    TL021675164144200.4950.50.9751.05
    TL032064206286300.5050.50.9891.05
    TL042108246026300.6060.61.1621.22
    TL052141286216300.7070.71.3341.39
    TL062467328258400.7000.71.3241.39
    TL072194366528400.7870.81.6741.73
    TL082467418258400.8970.91.6961.73
    TL092491458418400.98411.8431.913
    TL102508508528401.0941.12.0342.083
    TL112523548638401.1811.22.1842.253
    TL122470598278401.2911.32.4372.467
    TL132660648408401.4001.42.4552.467
    TL142833689538401.4881.52.4492.493
    TL15297271105010501.3901.42.4382.493
    TL16318777106510501.5071.52.4652.493
    TL17312881102610501.5851.62.6422.644
    TL18316187104810501.7031.72.8082.795
    TL1930009194410501.7811.83.0953.097
    TL20318097106010501.8981.93.1133.097
    TL213497106122312601.8941.93.0933.097
    TL223508112123112602.00123.2583.262
    TL233485116121412602.0722.13.3963.413
    下载: 导出CSV
    Baidu
  • [1]

    Burak K K, Deborah A L 2017 J. Propul. Power 33 264Google Scholar

    [2]

    Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948Google Scholar

    [3]

    Williams L T, Walker M L R 2014 J. Propul. Power 30 645Google Scholar

    [4]

    Rawlin V K, Sovey J S, Hamley J A 1999 Presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Albuquerque, USA, September 28–30, 1999 p99-4612-1

    [5]

    Brophy J R, MareuceiM G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Huntsville, USA, July 20–23, 2003 p2003-4542-1

    [6]

    Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut. 47 475Google Scholar

    [7]

    Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31–August 03, 2011 p2011-5661-1

    [8]

    Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11–14, 2004 p2004-3784-1

    [9]

    Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4348-1

    [10]

    Snyder J S, Goebel D M, Hofer R R, Polk, J E 2012 J. Propul. Power. 28 371Google Scholar

    [11]

    Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6–10, 2013 p2013-48-1

    [12]

    李建鹏, 张天平, 赵以德, 李娟, 郭德洲, 胡竟 2021 推进技术 42 1435

    Li J P, Zhang T P, ZhaoY D, Li J, Guo D Z, Hu J 2021 J. Propul. Technol. 42 1435

    [13]

    赵以德, 张天平, 黄永杰, 孙小菁, 孙运奎, 李娟, 杨福全, 池秀芬 2018 推进技术 39 942

    Zhao Y D, Zhang T P, Huang Y J, Sun X J, Sun Y K, Li J, Yang F Q, Chi X F 2018 J. Propul. Technol. 39 942

    [14]

    Jahn R G, Von J W 2006 Physics of Electric Propulsion (New York: Dover Pubns) p68

    [15]

    Farnell C C, Williams J D 2011 Plasma Sources Sci. Technol. 20 025006Google Scholar

    [16]

    Bittencourt J A 1980 Fundamentals of Plasma Physics (New York: Springer) p95

    [17]

    Piel A, Brown M 2011 Phys. Today 64 55

    [18]

    Mahalingam S, Menart J A 2010 J. Propul. Power 26 673Google Scholar

    [19]

    Mahalingam S, Menart J A 2007 J. Propul. Power 23 69Google Scholar

    [20]

    Brophy J R, Katz I, Polk J E, Anderson J R 2002 Presentedat the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Indianapolis, USA, July 7–10, 2002 p2002-4261-1

    [21]

    Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar

    [22]

    陈茂林, 夏广庆, 毛根旺 2014 63 182901Google Scholar

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901Google Scholar

    [23]

    龙建飞, 张天平, 李娟, 贾艳辉 2017 66 162901Google Scholar

    Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901Google Scholar

    [24]

    赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 69 115203Google Scholar

    Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203Google Scholar

    [25]

    Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol. 17 035010Google Scholar

    [26]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p245

    [27]

    赵以德, 吴宗海, 张天平, 耿海, 李娟, 李建鹏 2020 推进技术 01 187

    Zhao Y D, Wu Z H, Zhang T P, Geng H, Li J, Li J P 2020 J. Propul. Technol. 01 187

    [28]

    Green T S 1976 J. Phy. D:Appl. Phys. 9 1165Google Scholar

    [29]

    Boyd I D, Crofton M W 2004 J. Appl. Phys. 95 3285Google Scholar

    [30]

    Capece A M, Polk J E, Mikellides I G, Shepherd J E 2014 J. Appl. Phys. 115 153302Google Scholar

  • [1] 付瑜亮, 张思远, 杨谨远, 孙安邦, 王亚楠. 微波离子推力器中磁场发散区电子加热模式研究.  , 2024, 73(9): 095203. doi: 10.7498/aps.73.20240017
    [2] 谈人玮, 杨涓, 耿海, 吴先明, 牟浩. 氮气工质10厘米ECRIT中和器实验研究.  , 2023, 72(4): 045202. doi: 10.7498/aps.72.20221951
    [3] 付瑜亮, 杨涓, 夏旭, 孙安邦. 放电室长度对电子回旋共振离子推力器性能的影响机理.  , 2023, 72(17): 175204. doi: 10.7498/aps.72.20230719
    [4] 张媛, 姜文帆, 陈明阳. 低串扰低弯曲损耗环形芯少模多芯光纤的设计.  , 2022, 71(9): 094205. doi: 10.7498/aps.71.20211534
    [5] 李建鹏, 靳伍银, 赵以德. 加速电压和阳极流率对离子推力器性能的影响.  , 2022, 71(1): 015202. doi: 10.7498/aps.71.20211316
    [6] 李建鹏, 赵以德, 靳伍银, 张兴民, 李娟, 王彦龙. 多模式离子推力器放电室和栅极设计及其性能实验研究.  , 2022, 71(19): 195203. doi: 10.7498/aps.71.20220720
    [7] 刘帅, 史宇昊, 林天煜, 张永鹏, 路志建, 杨兰均. 工作参数对平行轨道加速器放电模式的影响.  , 2021, 70(20): 205205. doi: 10.7498/aps.70.20210484
    [8] 王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越. 腔体结构参数对毛细管放电型脉冲等离子体推力器放电特性的影响.  , 2021, 70(23): 235204. doi: 10.7498/aps.70.20211198
    [9] 赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平. 屏栅边缘小孔孔径对离子推力器性能的影响.  , 2020, 69(11): 115203. doi: 10.7498/aps.69.20200358
    [10] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生. 放电参数对爆燃模式下同轴枪强流脉冲放电等离子体的影响.  , 2019, 68(10): 105203. doi: 10.7498/aps.68.20190218
    [11] 龙建飞, 张天平, 杨威, 孙明明, 贾艳辉, 刘明正. 离子推力器推力密度特性.  , 2018, 67(2): 022901. doi: 10.7498/aps.67.20171507
    [12] 龙建飞, 张天平, 李娟, 贾艳辉. 离子推力器栅极透过率径向分布特性研究.  , 2017, 66(16): 162901. doi: 10.7498/aps.66.162901
    [13] 陈茂林, 夏广庆, 徐宗琦, 毛根旺. 栅极热变形对离子推力器工作过程影响分析.  , 2015, 64(9): 094104. doi: 10.7498/aps.64.094104
    [14] 赵高, 熊玉卿, 马超, 刘忠伟, 陈强. 短管螺旋波放电中等离子体参数测量和模式转化研究.  , 2014, 63(23): 235202. doi: 10.7498/aps.63.235202
    [15] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真.  , 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [16] 王维, 杨兰均, 高洁, 刘帅. 多针-网电极离子风激励器推力与推功比的实验研究.  , 2013, 62(7): 075205. doi: 10.7498/aps.62.075205
    [17] 杜朝海, 李铮迪, 薛志浩, 刘濮鲲, 薛谦忠, 张世昌, 徐寿喜, 耿志辉, 顾伟, 粟亦农, 刘高峰. W波段损耗介质加载回旋返波振荡器中模式竞争的研究.  , 2012, 61(7): 070703. doi: 10.7498/aps.61.070703
    [18] 韩轲, 江滨浩, 纪延超. 霍尔效应推力器放电双稳态机理研究.  , 2012, 61(7): 075209. doi: 10.7498/aps.61.075209
    [19] 郝艳捧, 阳林, 涂恩来, 陈建阳, 朱展文, 王晓蕾. 实验研究大气压多脉冲辉光放电的模式和机理.  , 2010, 59(4): 2610-2616. doi: 10.7498/aps.59.2610
    [20] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟.  , 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
计量
  • 文章访问数:  4116
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-04
  • 修回日期:  2021-11-21
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回
Baidu
map