-
Using the surface impedance boundary condition (SIBC)-finite difference time domain (FDTD) method, the electromagnetic scattering characteristic of non-magnetized plasma coating on metal material is obtained, under the one-dimensional (1D) oblique incident wave condition. The SIBC method can greatly reduce computational memory by ignoring the mesh division of the background material. Firstly, the expression of frequency domain surface impedance is derived, and substituted into boundary condition equation. Then the equation is transformed to time domain via Fourier inverse transformation method, and the formula is quantized to obtain the update equation by piecewise linear recursive convolution (PLRC) method. The algorithm is used to calculate the reflection coefficients of parallel and vertical polarization waves at oblique incident angels. The comparison of the SIBC-FDTD results with analytic solutions shows the validation and effectiveness of proposed method. Finally, the effect of incident angle on reflection coefficient is analyzed by this method.
-
Keywords:
- finite-difference time-domain method /
- surface impedance boundary condition /
- non-magnetized plasma thin coating
[1] Minkwan K, Gulhan A 2011 Proceedings of 5th International Conference on Recent Advances In Space Technologies Istanbul, Turkiye, June 9-11, 2011 p412
[2] Gillman E D, Foster J E, Blankson I M 2010 2010 IEEE International Conference on Plasma Science Norfolk, Virginia, USA, June 20-24, 2010 (abstracts)
[3] Zivanovic S S, Yee K S, Mei K K 1991 IEEE Trans. Microwave Theory Tech. 39 471
[4] Kärkkäinen M K 2003 IEEE Trans. Microwave Theory Tech. 51 1774
[5] Maloney J G, Smith G S 1992 IEEE Trans. Antennas Propagat. 40 38
[6] Kärkkäinen M K 2005 IEEE Trans. Antennas Propagat. 53 1174
[7] Kärkkäinen M K 2004 IEEE Trans. Electromagnetic Compatibility 46 222
[8] Wei B, Dong Y H, Wang F, Li C Z 2010 Acta Phys. Sin. 59 2443 (in Chinese) [魏兵, 董宇航, 王飞, 李存志 2010 59 2443]
[9] Kelley D F, Luebbers R J 1996 IEEE Trans. Antennas Propagat. 44 792
[10] Luebbers R J, Hunsberger F, Kunz K S 1991 IEEE Trans. Antennas Propagat. 39 29
[11] Ge D B, Yan Y B 2011 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Edn.) (Xi'an: Xidian University Press) p305 (in Chinese) [葛德彪, 闫玉波 2011 电磁波时域有限差分方法(第三版) (西安: 西安电子科技大学出版社)第305页]
-
[1] Minkwan K, Gulhan A 2011 Proceedings of 5th International Conference on Recent Advances In Space Technologies Istanbul, Turkiye, June 9-11, 2011 p412
[2] Gillman E D, Foster J E, Blankson I M 2010 2010 IEEE International Conference on Plasma Science Norfolk, Virginia, USA, June 20-24, 2010 (abstracts)
[3] Zivanovic S S, Yee K S, Mei K K 1991 IEEE Trans. Microwave Theory Tech. 39 471
[4] Kärkkäinen M K 2003 IEEE Trans. Microwave Theory Tech. 51 1774
[5] Maloney J G, Smith G S 1992 IEEE Trans. Antennas Propagat. 40 38
[6] Kärkkäinen M K 2005 IEEE Trans. Antennas Propagat. 53 1174
[7] Kärkkäinen M K 2004 IEEE Trans. Electromagnetic Compatibility 46 222
[8] Wei B, Dong Y H, Wang F, Li C Z 2010 Acta Phys. Sin. 59 2443 (in Chinese) [魏兵, 董宇航, 王飞, 李存志 2010 59 2443]
[9] Kelley D F, Luebbers R J 1996 IEEE Trans. Antennas Propagat. 44 792
[10] Luebbers R J, Hunsberger F, Kunz K S 1991 IEEE Trans. Antennas Propagat. 39 29
[11] Ge D B, Yan Y B 2011 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Edn.) (Xi'an: Xidian University Press) p305 (in Chinese) [葛德彪, 闫玉波 2011 电磁波时域有限差分方法(第三版) (西安: 西安电子科技大学出版社)第305页]
Catalog
Metrics
- Abstract views: 7229
- PDF Downloads: 581
- Cited By: 0