搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面离子阱的衬底效应模型研究及新型离子阱设计

张见 陈书明 刘威

引用本文:
Citation:

表面离子阱的衬底效应模型研究及新型离子阱设计

张见, 陈书明, 刘威

Substrate effect on surface-electrode ion trap and hybrid design for ion trap

Zhang Jian, Chen Shu-Ming, Liu Wei
PDF
导出引用
  • 通过分析表面离子阱衬底的功率损失和电势损失对离子阱阱深和离子加热速率的影响,提出考虑衬底效应的阱深和离子加热速率的解析分析模型. 研究发现,硅基衬底的电势损失对表面离子阱阱深的降幅达17.19%,功率损失对离子加热速率的加速达13.37%. 为了降低衬底效应的不利影响,设计了衬底真空隔离结构的表面离子阱,在离子阱射频电极和直流电极间的衬底表面刻蚀出多条隔离槽,从而减小衬底的等效电导和等效电容,达到降低衬底功率和电势损失的目的. 模拟结果显示,相比于一般结构,真空隔离结构的硅基表面离子阱能够使阱深加深20.22%,使衬底功率损失降低54.55%.
    To analyze the trap depth and ion heating rate of a surface ion trap under the influence of substrate power loss and voltage loss, in this paper we proposes analytic expressions of trap depth and ion heating rate. The results show that the voltage loss of Si substrate can reduce the trap depth by 17.19%, and the power loss would accelerate the ion heating rate by 13.37%. In order to reduce the influence of substrate effect, a new surface ion trap with low self-heating and voltage-loss is proposed in this paper, whose substrate is insulated by some vacuum trench to reduce the equivalent conductivity and capacitance. The simulation results illuminate that compared with the surface ion trap with normal Si-SiO2 substrate, the one with vacuum trench insulation exhibits a 20.22% increase in trap depth and a 54.44% reduction in power loss.
    [1]

    Cirac J I, Zoller P 1995 Phys. Rev. Lett. 74 4091

    [2]

    Jiang Z, Chen P X 2012 Acta Phys. Sin. 61 014209 (in Chinese) [蒋智, 陈平形 2012 61 014209]

    [3]

    Seidelin S, Chiaverini J, Reichle R, Bollinger J J, Leibfried D, Britton J, Wesenberg J H, Blakestad R B, Epstein R J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Shiga N, Wineland D J 2006 Phys. Rev. Lett. 96 253003

    [4]

    Kim T H, Herskind P F, Kim T, Kim J, Chuang I L 2010 Phys. Rev. A 82 043412

    [5]

    Chiaverini J, Blakestad R B, Britton J, JostJ D, Langer C, Leibfried D, Ozeri R, Wineland D J 2005 Quant. Inf. Comp. 5 419

    [6]

    Chen L, Wan W, Xie Y, Wu Y, Zhou F, Feng M 2013 Chin. Phys. Lett. 30 013702

    [7]

    Wan W, Chen L, Wu H Y, Xie Y, Zhou F, Feng M 2013 Chin. Phys. Lett. 30 073701

    [8]

    Wan J Y, Wang Y Z, Liu L 2008 Chin. Phys. B 17 3565

    [9]

    Dubessy R, Coudreau T, Guidoni L 2009 Phys. Rev. A 80 031402

    [10]

    Labaziewicz J, Ge Y, Antohi P, Leibrandt D, Brown K R, Chuang I L 2008 Phys. Rev. Lett. 100 013001

    [11]

    Brownnutt M 2007 Ph. D. Dissertation (London: Imperial College)

    [12]

    Zheng J, Hahm Y C, Weisshaar A, Tripathi V K 1999 Proc. IEEE 8th Topical Meeting Electrical Performance of Electronic Packaging San Diego, CA, October 25–27 p185

    [13]

    Kwon Y R, Hietala V M, Champlin K S 1987 IEEE Trans. Microw. Theory Tech. 35 545

    [14]

    Salvador A B 2008 M. S. Dissertation (Ulm: Ulm University)

    [15]

    Erin F 2009 Ph. D. Dissertation (Innsbruck: Innsbruck University)

    [16]

    Pauli A 2011 M. S. Dissertation (Innsbruck: InnsbruckUniversity)

    [17]

    House M G 2008 Phys. Rev. A 78 033402

    [18]

    Turchette Q A, Kielpinski D, King B E, Leibfried D, Meekhof D M, Myatt C J, Rowe M A, Sackett C A, Wood C S, Itano W M, Monroe C, Wineland D J 2000 Phys. Rev. A 61 063418

  • [1]

    Cirac J I, Zoller P 1995 Phys. Rev. Lett. 74 4091

    [2]

    Jiang Z, Chen P X 2012 Acta Phys. Sin. 61 014209 (in Chinese) [蒋智, 陈平形 2012 61 014209]

    [3]

    Seidelin S, Chiaverini J, Reichle R, Bollinger J J, Leibfried D, Britton J, Wesenberg J H, Blakestad R B, Epstein R J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Shiga N, Wineland D J 2006 Phys. Rev. Lett. 96 253003

    [4]

    Kim T H, Herskind P F, Kim T, Kim J, Chuang I L 2010 Phys. Rev. A 82 043412

    [5]

    Chiaverini J, Blakestad R B, Britton J, JostJ D, Langer C, Leibfried D, Ozeri R, Wineland D J 2005 Quant. Inf. Comp. 5 419

    [6]

    Chen L, Wan W, Xie Y, Wu Y, Zhou F, Feng M 2013 Chin. Phys. Lett. 30 013702

    [7]

    Wan W, Chen L, Wu H Y, Xie Y, Zhou F, Feng M 2013 Chin. Phys. Lett. 30 073701

    [8]

    Wan J Y, Wang Y Z, Liu L 2008 Chin. Phys. B 17 3565

    [9]

    Dubessy R, Coudreau T, Guidoni L 2009 Phys. Rev. A 80 031402

    [10]

    Labaziewicz J, Ge Y, Antohi P, Leibrandt D, Brown K R, Chuang I L 2008 Phys. Rev. Lett. 100 013001

    [11]

    Brownnutt M 2007 Ph. D. Dissertation (London: Imperial College)

    [12]

    Zheng J, Hahm Y C, Weisshaar A, Tripathi V K 1999 Proc. IEEE 8th Topical Meeting Electrical Performance of Electronic Packaging San Diego, CA, October 25–27 p185

    [13]

    Kwon Y R, Hietala V M, Champlin K S 1987 IEEE Trans. Microw. Theory Tech. 35 545

    [14]

    Salvador A B 2008 M. S. Dissertation (Ulm: Ulm University)

    [15]

    Erin F 2009 Ph. D. Dissertation (Innsbruck: Innsbruck University)

    [16]

    Pauli A 2011 M. S. Dissertation (Innsbruck: InnsbruckUniversity)

    [17]

    House M G 2008 Phys. Rev. A 78 033402

    [18]

    Turchette Q A, Kielpinski D, King B E, Leibfried D, Meekhof D M, Myatt C J, Rowe M A, Sackett C A, Wood C S, Itano W M, Monroe C, Wineland D J 2000 Phys. Rev. A 61 063418

  • [1] 张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐. 钨杂质辐射对托卡马克等离子体大破裂快速热猝灭阶段热能损失过程的影响.  , 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [2] 郝保龙, 李颖颖, 陈伟, 郝广周, 顾翔, 孙恬恬, 王嵎民, 董家齐, 袁保山, 彭元凯, 石跃江, 谢华生, 刘敏胜, ENN TEAM. EXL-50U球形环中快离子磁场波纹损失的优化模拟研究.  , 2023, 72(21): 215215. doi: 10.7498/aps.72.20230749
    [3] 张鸿, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平. 重离子在碳化硅中的输运过程及能量损失.  , 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [4] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究.  , 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [5] 牟茂淋, 刘宇, 王中天, 陈少永, 唐昌建. 托卡马克装置中高能离子的直接损失.  , 2014, 63(16): 165201. doi: 10.7498/aps.63.165201
    [6] 周前红, 董志伟. 弱电离大气等离子体电子碰撞能量损失的理论研究.  , 2013, 62(20): 205201. doi: 10.7498/aps.62.205201
    [7] 黄茜, 张德坤, 熊绍珍, 赵颖, 张晓丹. 降低表面等离子激元寄生吸收损失的途径研究.  , 2012, 61(21): 217301. doi: 10.7498/aps.61.217301
    [8] 谢国锋, 王德武, 应纯同. 计及溅射损失的平行板静电场法离子引出和收集.  , 2005, 54(4): 1543-1551. doi: 10.7498/aps.54.1543
    [9] 谢国锋, 王德武, 应纯同. 考虑溅射损失的RF共振法离子引出和收集.  , 2005, 54(5): 2147-2152. doi: 10.7498/aps.54.2147
    [10] 朱学光, 匡光力, 赵燕平, 李有宜, 谢纪康. 快波少数离子加热.  , 1999, 48(9): 1709-1717. doi: 10.7498/aps.48.1709
    [11] 宋远红, 王友年, 宫 野. 氢离子在固体表面掠角散射与能量损失的数值模拟.  , 1999, 48(7): 1275-1281. doi: 10.7498/aps.48.1275
    [12] 严 辉, 陈光华, 黄世平, 郭伟民. C+离子注入Si单晶形成SiC埋层中Si2p的特征能量损失谱.  , 1998, 47(5): 876-880. doi: 10.7498/aps.47.876
    [13] 王友年, 马腾才. 低速分子离子在固体电子气中的散射与能量损失.  , 1994, 43(6): 979-984. doi: 10.7498/aps.43.979
    [14] 李跃林, 徐至展, 陈时胜. Al等离子体辐射损失的数值研究.  , 1990, 39(12): 1915-1920. doi: 10.7498/aps.39.1915
    [15] 郭世宠, 沈解伍, 蔡诗东. 温离子对动力迥旋损失锥不稳定性的作用.  , 1988, 37(12): 1993-2003. doi: 10.7498/aps.37.1993
    [16] 费璐, 郑宇, 张强基, 黄金林, 华中一. 多晶硼和含硼金属玻璃的表面广延能量损失精细结构研究.  , 1987, 36(9): 1213-1218. doi: 10.7498/aps.36.1213
    [17] 陈雁萍, 张淳沅. 粒子轨道损失对低杂波离子随机加热的影响.  , 1984, 33(4): 457-464. doi: 10.7498/aps.33.457
    [18] 徐至展, 李安民, 陈时胜, 林礼煌, 梁向春, 欧阳斌, 毕无忌, 何兴法, 殷光裕, 张树干, 潘成明. 激光加热等离子体研究.  , 1981, 30(8): 1077-1084. doi: 10.7498/aps.30.1077
    [19] 姚鑫兹, 祖钦信, 徐瑶, 高鹏, 何凤杰, 李宝环. 用激光散射法测量等离子体的电子温度和θ-收缩等离子体能量损失的研究.  , 1979, 28(6): 824-832. doi: 10.7498/aps.28.824
    [20] 谭维翰, 徐至展. 激光等离子体的单频及双频加热.  , 1977, 26(2): 133-148. doi: 10.7498/aps.26.133
计量
  • 文章访问数:  6208
  • PDF下载量:  439
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-14
  • 修回日期:  2013-10-30
  • 刊出日期:  2014-03-05

/

返回文章
返回
Baidu
map