搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运用四元数分析椭球微粒所受的光阱力

张书赫 梁振 周金华

引用本文:
Citation:

运用四元数分析椭球微粒所受的光阱力

张书赫, 梁振, 周金华

Using quaternions to analyze the trapping force of an ellipsoidal bead

Zhang Shu-He, Liang Zhen, Zhou Jin-Hua
PDF
导出引用
  • 在光镊的射线模型中,追迹光线在界面的折射反射光是较基本的也是较复杂的问题.传统的几何光学法计算光线的方位,对于一些不规则的物体来说,存在一定的困难度.本文提出使用四元数简化空间光线追迹,从而可计算非球形颗粒的光阱力.以入射光线和界面法线的外积确定入射面的法线为旋转轴;根据折射定律确定由入射光线旋转到反射光线和折射光线的角度.将入射光线以四元数表示,根据四元数旋转,可获得反射光线和折射光线的空间矢量.根据光子的动量变化,求得光阱对微粒的作用力.本文以球差影响下的不同形变的椭球为计算示例,模拟了椭球在光阱下的动力学行为,结果表明椭球的横向和轴向俘获效率受到各方向变形系数的影响;球差增大降低了轴向的最大俘获效率,稳定俘获位置也随之朝负轴偏离中心更远;在固定球差作用下,最大轴向俘获效率与轴向变形系数相关,在特定的变形下轴向俘获效率变得较大.由此验证了四元数方法的正确性、实用性与普遍性.
    In the ray-optics (RO) model of optical tweezers, tracing refractive and reflected rays with vectors play important roles in calculating the trapping forces. Traditional ray-tracing method with solid geometry, to some extent, is complicated in determining the orientations of those refractive and reflected rays according to spatial incident rays. It is difficult to calculate the trapping forces for irregular particles. In this paper, quaternion is proposed to rotate ray vectors for simplifying the traces of all kinds of spatial rays. Then, it is appropriate to calculate the trapping force of an ellipsoid bead. Based on the algorithm of quaternion and the convention between the interface normal and angular directions, the direction of normal always points from optically denser medium to thinner medium. The rotation axis is the cross product of the incident ray and the interface normal. And the positive angular direction can be determined by right-hand rule based on the orientation of the rotation axis. According to Snell' law, the rotation angle between the incident ray and refractive/reflected ray can be determined. The quaternion for rotation consists of rotation axis and angle. So the refractive and reflected rays are both determined by quaternions of incident ray and rotation based on rotation rules. Furthermore, the force on interface can also be calculated according to momentum changes of the photon before and after the interface refraction and reflection. The quaternion method is used to analyze the effects of coverslip position and deformation ratio on the trapping efficiency of ellipsoid particles. Our simulative results show that the lateral and axial trapping efficiencies are obviously affected by the deformation of the ellipsoid itself. No matter whether the bead deforms transversely or axially, the transverse and axial trapping efficiencies both become larger at a specific deformation. Meantime, the increase of the spherical aberration reduces the maximum axial trapping efficiency, and the equilibrium position of the bead becomes farther away from the center. Using quaternion method, the calculation of refractive lightvector can be simplified in comparison with by using the method of Euclidean geometry or transformation matrix. Theoretically, this quaternion can be used to trace rays on any irregular geometric surfaces. In conclusion, the method of quaternion can make ray tracing easier and extend the applications of RO model.
      Corresponding author: Liang Zhen, liangzhen@foxmail.com;zhoujinhua@ahmu.edu.cn ; Zhou Jin-Hua, liangzhen@foxmail.com;zhoujinhua@ahmu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No.31400943),the Key Project of Natural Science Foundation of the Anhui Higher Education Institutions,China (Grant No.KJ2016A361),and the Grants for Scientific Research of BSKY from Anhui Medical University,China (Grant No.XJ201518).
    [1]

    Schnitzer M J, Block S M 1997 Nature 388 386

    [2]

    Qian H, Chen H, Yan J 2016 Acta Phys. Sin. 65 188706 (in Chinese)[钱辉, 陈虎, 严洁 2016 65 188706]

    [3]

    Fazal F M, Block S M 2011 Nature Photon. 5 318

    [4]

    Xia P, Zhou J H, Song X Y, Wu B, Liu X, Li D, Zhang S Y, Wang Z K, Yu H J, Ward T, Zhang J C, Li Y M, Wang X N, Chen Y, Guo Z, Yao X B 2014 J. Mol. Cell Biol. 6 240

    [5]

    Ouyang H D, Wei M T 2010 Annu. Rev. Phys. Chem. 61 421

    [6]

    Zhou J H, Ren H L, Cai J, Li Y M 2008 Appl. Opt. 47 6307

    [7]

    Xu S H, Li Y M, Lou L R 2006 Chin. Phys. 15 1391

    [8]

    Wright W H, Sonek GJ, Berns M W 1994 Appl. Opt. 33 1735

    [9]

    Stilgoe A B, Nieminen T A, Knoner G, Heckenberg N R, Rubinsztein-Dunlop H 2008 Opt. Express 16 15039

    [10]

    Gu Y Q, Gong Z, Lou L R, Li Y M 2007 Appl. Laser 27 98 (in Chinese)[谷勇强, 龚錾, 楼立人, 李银妹 2007 应用激光 27 98]

    [11]

    Ashkin A 1992 Biophys. J. 61 569

    [12]

    Fällman E, Axner O 2003 Appl. Opt. 42 3915

    [13]

    Reihani S N S, Oddershede L B 2007 Opt. Lett. 32 1998

    [14]

    Sidick E, Collins S D, Knoesen A 1997 Appl. Opt. 36 6423

    [15]

    Bareil P B, Sheng Y, Chiou A 2006 Opt. Express 14 12503

    [16]

    Zhou J H, Zhong M C, Wang Z Q, Li Y M 2012 Opt. Express 20 14928

    [17]

    Kuipers J B 1999 Geometry, Intergrability and Quantization (New York:Coral Press) pp127-143

    [18]

    Xu F G 2012 Physics with Quaternions (Beijing:Peking University Press) pp16-186 (in Chinese)[许方官 2012 四元数物理学 (北京:北京大学出版社) 第16–186页]

    [19]

    Pletinckx D 1989 Visual Comput. 5 2

    [20]

    Zhang R H, Jia H G, Chen T, Zhang Y 2008 Opt. Precis. Eng. 16 1965 (in Chinese)[张荣辉, 贾宏光, 陈涛, 张跃 2008 光学精密工程 16 1965]

  • [1]

    Schnitzer M J, Block S M 1997 Nature 388 386

    [2]

    Qian H, Chen H, Yan J 2016 Acta Phys. Sin. 65 188706 (in Chinese)[钱辉, 陈虎, 严洁 2016 65 188706]

    [3]

    Fazal F M, Block S M 2011 Nature Photon. 5 318

    [4]

    Xia P, Zhou J H, Song X Y, Wu B, Liu X, Li D, Zhang S Y, Wang Z K, Yu H J, Ward T, Zhang J C, Li Y M, Wang X N, Chen Y, Guo Z, Yao X B 2014 J. Mol. Cell Biol. 6 240

    [5]

    Ouyang H D, Wei M T 2010 Annu. Rev. Phys. Chem. 61 421

    [6]

    Zhou J H, Ren H L, Cai J, Li Y M 2008 Appl. Opt. 47 6307

    [7]

    Xu S H, Li Y M, Lou L R 2006 Chin. Phys. 15 1391

    [8]

    Wright W H, Sonek GJ, Berns M W 1994 Appl. Opt. 33 1735

    [9]

    Stilgoe A B, Nieminen T A, Knoner G, Heckenberg N R, Rubinsztein-Dunlop H 2008 Opt. Express 16 15039

    [10]

    Gu Y Q, Gong Z, Lou L R, Li Y M 2007 Appl. Laser 27 98 (in Chinese)[谷勇强, 龚錾, 楼立人, 李银妹 2007 应用激光 27 98]

    [11]

    Ashkin A 1992 Biophys. J. 61 569

    [12]

    Fällman E, Axner O 2003 Appl. Opt. 42 3915

    [13]

    Reihani S N S, Oddershede L B 2007 Opt. Lett. 32 1998

    [14]

    Sidick E, Collins S D, Knoesen A 1997 Appl. Opt. 36 6423

    [15]

    Bareil P B, Sheng Y, Chiou A 2006 Opt. Express 14 12503

    [16]

    Zhou J H, Zhong M C, Wang Z Q, Li Y M 2012 Opt. Express 20 14928

    [17]

    Kuipers J B 1999 Geometry, Intergrability and Quantization (New York:Coral Press) pp127-143

    [18]

    Xu F G 2012 Physics with Quaternions (Beijing:Peking University Press) pp16-186 (in Chinese)[许方官 2012 四元数物理学 (北京:北京大学出版社) 第16–186页]

    [19]

    Pletinckx D 1989 Visual Comput. 5 2

    [20]

    Zhang R H, Jia H G, Chen T, Zhang Y 2008 Opt. Precis. Eng. 16 1965 (in Chinese)[张荣辉, 贾宏光, 陈涛, 张跃 2008 光学精密工程 16 1965]

  • [1] 许明伟, 杜康, 李可, 王飞翔, 肖体乔. 时变复杂背景自由运动目标的高灵敏追迹成像.  , 2023, 72(15): 150701. doi: 10.7498/aps.72.20230360
    [2] 吴长茂, 唐熊忻, 夏媛媛, 杨瀚翔, 徐帆江. 用于空间相机设计的高精度光线追迹方法.  , 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [3] 雒亮, 夏辉, 刘俊圣, 费家乐, 谢文科. 基于元胞自动机的气动光学光线追迹算法.  , 2020, 69(19): 194201. doi: 10.7498/aps.69.20200532
    [4] 王嗣强, 季顺迎. 椭球颗粒材料在水平转筒内混合特性的超二次曲面离散元分析.  , 2019, 68(23): 234501. doi: 10.7498/aps.68.20191071
    [5] 李高华, 王福新. 高雷诺数双螺旋涡尾迹演化特性分析.  , 2018, 67(5): 054701. doi: 10.7498/aps.67.20171291
    [6] 王玥, 梁言生, 严绍辉, 曹志良, 蔡亚楠, 张艳, 姚保利, 雷铭. 轴向多光阱微粒捕获与实时直接观测技术.  , 2018, 67(13): 138701. doi: 10.7498/aps.67.20180460
    [7] 张书赫, 邵梦, 周金华. 光线庞加莱球法构建的结构光场及其传输特性研究.  , 2018, 67(22): 224204. doi: 10.7498/aps.67.20180918
    [8] 丁浩林, 易仕和, 朱杨柱, 赵鑫海, 何霖. 不同光线入射角度下超声速湍流边界层气动光学效应的实验研究.  , 2017, 66(24): 244201. doi: 10.7498/aps.66.244201
    [9] 李思祺, 齐卫宏. Ag-Au二元纳米微粒吸收谱的计算.  , 2014, 63(11): 117802. doi: 10.7498/aps.63.117802
    [10] 赖晓磊. 高聚焦高斯光束对左手性材料球轴向力的光线模型计算.  , 2013, 62(18): 184201. doi: 10.7498/aps.62.184201
    [11] 王驰, 毕书博, 王利, 夏学勤, 丁卫, 于瀛洁. 超小自聚焦光纤探头研究用场追迹数值模拟技术.  , 2013, 62(2): 024217. doi: 10.7498/aps.62.024217
    [12] 陈灿, 佟亚军, 谢红兰, 肖体乔. Laue弯晶聚焦特性的光线追迹研究.  , 2012, 61(10): 104102. doi: 10.7498/aps.61.104102
    [13] 胡摇, 王逍, 朱启华. 三类构型激光脉冲压缩器光栅拼接误差容限比较.  , 2011, 60(12): 124205. doi: 10.7498/aps.60.124205
    [14] 胡耿军, 李静, 龙潜, 陶陶, 张恭轩, 伍小平. 时域有限差分法数值仿真单光镊中微球受到的光阱力.  , 2011, 60(3): 030301. doi: 10.7498/aps.60.030301
    [15] 岑兆丰, 李晓彤. 热应力双折射介质中的光传输研究.  , 2010, 59(8): 5784-5790. doi: 10.7498/aps.59.5784
    [16] 孙贤明, 申晋, 魏佩瑜. 含有密集随机分布内核的椭球粒子光散射特性研究.  , 2009, 58(9): 6222-6226. doi: 10.7498/aps.58.6222
    [17] 叶 凡, 薛飞彪, 郭 存, 李正宏, 杨建伦, 徐荣昆, 章法强, 金永杰. 利用凸晶摄谱仪获取Z箍缩等离子体X辐射单色图像.  , 2008, 57(3): 1792-1795. doi: 10.7498/aps.57.1792
    [18] 盖 琦, 王明伟, 李智磊, 翟宏琛. 基于离散四元数傅里叶变换的双随机相位加密技术.  , 2008, 57(11): 6955-6961. doi: 10.7498/aps.57.6955
    [19] 邬鹏举, 李玉德, 林晓燕, 刘安东, 孙天希. x射线在毛细导管中传输的模拟计算.  , 2005, 54(10): 4478-4482. doi: 10.7498/aps.54.4478
    [20] 黄珏华, 薛增泉. 镶嵌于基质中的金属超微粒子特性研究(Ⅰ)——超微粒子的量子阱点模型.  , 1993, 42(3): 385-393. doi: 10.7498/aps.42.385
计量
  • 文章访问数:  6503
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-03
  • 修回日期:  2016-10-17
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map